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ABSTRACT 

Chronic obstructive pulmonary disease (COPD) is a growing health concern 

associated with high morbidity and mortality, and is currently the third-ranked cause of 

death in the United States. COPD is characterized by airflow limitation that is not fully 

reversible and includes chronic bronchitis, functional small airway disease, and 

emphysema. The interrelationship between emphysema and airway disease in COPD 

makes it a highly complex and heterogeneous disorder. Appropriate diagnosis of COPD is 

vital to administer targeted therapy strategies that can improve patient’s quality of life and 

reduce the frequency of COPD associated exacerbations. Although spirometry or 

pulmonary function tests are currently the gold standard for the diagnosis and staging of 

the disease, their lack of reproducibility and minimal information on regional 

characterization of the lung tissue destruction makes it hard to rely on to phenotype COPD 

population and predict disease progression. Quantification of COPD, as done by computed 

tomography (CT) methods has seen significant advancements, helping us understand the 

complex pathophysiology of this disease. The prospective and established techniques that 

are derived from CT imaging such as densitometry, texture, airway, and pulmonary 

vasculature-based analyses have been successful in regional characterization of 

emphysema related lung tissue destruction and airway disease related morphological 

changes in COPD patients. Although, these measures enriched our diagnostic and treating 

capability of COPD, they lack information on patient specific alterations in lung mechanics 

and regional parenchymal stresses. This valuable information can be achieved through the 

use of image registration protocols. Our main goal of this research work is to examine and 

evaluate the role of lung mechanical measures derived from CT image registration 

techniques in COPD diagnosis, phenotyping, and progression.  
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PUBLIC ABSTRACT 

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death 

in the United States. COPD is a characterized by progressive airflow limitation and is 

associated with increasing mortality and morbidity. COPD is often used as an umbrella 

term for multiple disease components: tissue destruction due to emphysema, airway 

remodeling and narrowing due to small and large airway disease. The complex admixture 

of individual disease components in COPD makes it a highly heterogeneous disorder. The 

current gold standard of COPD diagnosis is by quantifying airflow obstruction using 

spirometry. However, spirometry is a global measure and is not helpful in assessing the 

contribution of emphysema and airway disease separately in COPD patients. Computed 

tomography (CT) is increasingly being used to characterize and quantify the lung tissue of 

COPD patients. The vast majority of CT image-based research of COPD is based on the 

density and the texture analysis of either inspiratory or expiratory CT images, thus 

providing the regional characterization of the disease. In this thesis, we used the 

information derived from both inspiratory and expiratory CT to capture mechanical 

properties of lung tissue in COPD patients. We further explored the role of the CT-derived 

lung mechanics in COPD presence and severity, and disease progression.   
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Respiratory Anatomy and Physiology 

 

The respiratory system is vital to the human body and is responsible for the delivery 

of oxygen and removal of carbon dioxide to and from the blood stream. As most of the 

cells in our body lie too far from the lungs to have inhaled oxygen reach them directly, 

oxygen is instead carried by the blood stream which comes in contact with the inhaled air 

in the respiratory system. The exchange of gases takes place at the alveoli where oxygen 

diffuses into the blood stream and carbon dioxide diffuses out of the blood stream during 

inhalation and exhalation. Although the primary function of the respiratory system is the 

gas exchange, other functions include filtering and temperature maintenance of the inhaled 

air, sound production through vocal chords in the larynx, and control of body pH levels. 

Anatomically, the respiratory system can be separated into upper and lower respiratory 

tract. The upper respiratory tract comprises of nasal cavity, pharynx, and larynx whereas 

the lower respiratory tract comprises of trachea, bronchial tree, terminal bronchioles, and 

alveoli.  

Functionally, the organs that are not involved in the gas exchange in the respiratory 

anatomy are described as conducting zone (nasal cavity to bronchioles). The role of 

conducting zone is to deliver the inhaled air into the deep regions of the lung. The structures 

including trachea, bronchi, and bronchioles are often called the airway tree since the trachea 

splits into right and left bronchi and the airways further subdivide, forming tree-like 

structure. The bronchial division, or generation, is usually described by a number indicating 

the current division from the trachea. The cross-sectional trachea diameter in the normal 
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human adult is roughly 1.3-2.5 cm in the coronal plane while females have slightly smaller 

diameters, 1.0-2.1 cm [1]. The trachea divides into the main bronchi at the carina and the 

right bronchus is wider and shorter than the left bronchi. This is often the reason to believe 

that inhaled noxious particles have higher chances of deposition in the right bronchus than 

the left bronchus [2]. The right bronchus is further subdivided into three lobes: the right 

upper, right middle, and right lower lobes, while the left bronchus divides into the left upper 

and left lower lobes. The lobar bronchi further divide into segmental bronchi, which serves 

as bronchopulmonary segments of each lobe. The bronchi keep dividing into much smaller 

segments up to 24 generations from the main trachea. The passage way that starts from the 

trachea and continues until the terminal bronchioles is called the conducting airways. This 

area contributes to the anatomic dead space, which takes up approximately 150 mL in 

volume.  

 

Figure 1.1: Schematic of the human respiratory system, reprint from [3] 
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The regions from the alveolar duct to alveoli are responsible for gas exchange, and 

are referred as the respiratory zone. The terminal bronchioles divided into respiratory 

bronchioles where fewer alveolar structures present at the walls. The respiratory 

bronchioles further divide into alveolar ducts which are completed filled with alveoli. This 

region is called the acinar region. The acinar region is responsible for the functional lung 

tissue or parenchyma. This region takes up most part of the lung, approximately 3 liters in 

volume. The entire acinar region is surrounded by a rich network of blood capillaries. It is 

estimated that each adult lung has about 300 million alveoli, with a total surface area for 

gas exchange of 70-80 m2. Gas exchange at alveolar surface that separates the alveoli from 

the blood capillaries. There are approximately 300 million of alveoli and each is smaller 

than a grain of salt. The gas exchange occurs through diffusion. The partial pressure of 

oxygen in the inhaled air at the alveoli is greater than the partial pressure of blood oxygen 

allowing for the exchange. 

Inspiration is carried out by the diaphragm contraction which can descend up to 10 

cm on forced breathing. The contraction of diaphragm pulls the anterior end of each rib 

enlarging the volume of the thorax. As a result, the intrathoracic pressure and 

intrapulmonary pressure decreases relative to the external atmospheric pressure. The 

pressure gradient initiates the movement of inhaled air from higher pressure regions to the 

lower pressure regions. During expiration, which is mostly a passive process, the lung and 

chest wall return to its original shape and position due to their elastic recoil. This increases 

the pressure inside the lung and releases the air from the lungs. In normal quiet breathing, 

the elastic recoil of the lungs and chest wall is needed to return the thorax to its original 

state where intercostal muscles in the thorax take part in forced expiration. A pressure-
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volume curve measured during breathing describes the mechanical properties of the lungs 

and its ability to stretch. The change in lung volume as a result of change in the pressure is 

referred to as lung compliance. A high lung compliance means the lung can be easily 

distended where as a low lung compliance means that the lung is ‘stiff’. The measurement 

of lung volumes at different time points is vital to our understanding of pulmonary 

pathophysiology. A spirometer or pulmonary function test is used to measure lung volumes 

which generates a spirogram, as shown in Figure 1.2.  

 

Figure 1.2: Static lung volumes and capacity tracing measured by a spirometer, from [6] 

Although there are numerous diseases that affect the lung, they are broadly 

described as either obstructive or restrictive lung disease. Obstructive lung diseases 

diminish a person’s ability to completely expel air from the lung resulting in air getting 

trapped inside after each breath. The common obstructive lung diseases are chronic 

obstructive pulmonary disease (COPD), asthma, bronchiectasis, and cystic fibrosis. On the 

other hand, persons with restrictive lung disease face a hard time expanding the lungs to 

their maximum capacity during inspiration due to stiffness of chest walls and/or damage to 
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the muscles involved in breathing. The most common restrictive diseases are interstitial 

lung disease, sarcoidosis, pulmonary fibrosis, and silicosis.  

1.2. Chronic Obstructive Pulmonary Disease (COPD) 

Chronic obstructive pulmonary disease (COPD) is currently the third-ranked cause 

of death in the United States behind cancer and heart disease [7, 8]. Although it is largely 

preventable, the morbidity and mortality associated with COPD is ever increasing [9]. Our 

limited understanding of the underlying pathophysiology and minimal access to targeted 

therapies for COPD has made prevention difficult. COPD is largely undiagnosed and often 

misdiagnosed as asthma. COPD, as defined by Global Initiative for Chronic Obstructive 

Lung Disease (GOLD) [8], is: 

 

“A common preventable and treatable disease, is characterized by persistent airflow 

limitation that is usually progressive and associated with an enhanced chronic 

inflammatory response in the airways and the lung to noxious particles or gases.” 

 

Although tobacco smoking is a major risk factor for COPD, other factors such as 

environmental pollution, occupational exposure to noxious gases, and genetic factors also 

known to cause COPD. The pathological consequences of COPD induce a series of 

structural and physiological changes which eventually impact the patient’s quality of life 

and health status. COPD is an obstructive lung disease where the affected lung tissue loses 

its ability to expel air from the lung, resulting in air trapping in the lungs. This difficulty in 

emptying air out of the lungs lead to shortness of breath (dyspnea) and reduced exercise 

capacity in COPD patients. Other major symptoms include chronic cough and sputum 



www.manaraa.com

6  
 

production. COPD is often an umbrella term for three major disease components: 

emphysema, large airway disease, and/or functional small airway disease. COPD is also 

increasingly associated with other comorbidities such as pneumonia, hypertension, and 

cardiovascular disease.  

Emphysema is characterized by thinning and hyperinflation of the alveoli. The 

alveolar structures that are damaged by emphysema loses their elastic recoil and trap air at 

the end of each breath. Over time, the muscles involved in breathing are forced to adjust 

for trapped air in the lungs, which in turn compromises their ability to function. The lungs 

become more difficult to ventilate resulting in increased effort to breathe and reduced 

exercise capacity. Large airway disease or chronic bronchitis is a condition of increased 

mucus production in the airways. This causes morphological changes to the airways 

(narrowing or remodeling). The main site of airflow obstruction occurs in the small airways 

generally defined as those that are less than 2 mm in diameter. The loss of lung elastic 

recoil, inflammation, and airway remodeling contributes to the airflow limitation at the 

small airways causing hyperinflation at rest and dynamic hyperinflation during exercise.  

The clinical diagnosis of COPD is considered for the patients who has dyspnea, 

chronic cough or sputum production, and a history of exposure to any risk factors of the 

disease. Spirometry is the current gold standard to diagnose COPD. If the ratio of forced 

expiratory volume in one second (FEV1) to the forced vital capacity (FVC) is less than 0.7, 

the diagnosis of COPD is confirmed. The rate of decline in FEV1 is steeper in smokers 

than nonsmokers. However, this ratio is known to underestimate the disease in younger 

patients and overestimation in older patients. Older subjects tend to have a decline in their 

lung function as a result of their age and physical capability. For many years, COPD was 
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categorized into four severity stages (I-IV), based on the GOLD guidelines [8, 11, 12]. 

However, the complex interplay between emphysema and airway disease in COPD patients 

makes the spirometry-based phenotyping less useful. Since then, the GOLD classification 

system of COPD has gone through several iterations,. The updated classification also looks 

at the validated patient’s questionnaires such as the COPD assessment test (CAT), the 

clinical COPD questionnaire (CCQ), and/or the modified British Medical Research 

Council (mMRC), in addition to the frequency of exacerbations. An exacerbation in COPD 

patient is characterized by a worsening of the patient’s respiratory symptoms leading to a 

change in medication. The frequency of exacerbations and hospitalization is associated 

with poor prognosis. In the wake of new additions to the current GOLD classification 

system, it is still challenging to separate emphysema from airway disease component in 

COPD patients solely based on pulmonary function tests and quality of life questionnaires. 

Although, there has been considerable research done in elevating the usefulness of 

spirometry in COPD diagnosis, the use of imaging modalities has become main stream to 

identify COPD presence, severity, and progression.  

1.3. CT Imaging in COPD 

Multi-detector computed tomography imaging in COPD has seen significant 

advancements in the past decade helping the clinicians to better phenotype and characterize 

pathology [13]. In 1895, William Roentgen was the first person to discover X-rays [14] 

and found that the inner details of the body could be made visible non-invasively using this 

imaging technique. Almost half a century later in 1972, Godfrey Hounsfield invented 

computed tomography (CT), where a volumetric object was reconstructed from a series of 

axial scans [15]. Conventional X-ray radiography passed rays through the body and 
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projected a three-dimensional object onto a two-dimensional plane. In this process, there is 

a clear overlap of the structures and very limited depth information. On the other hand, CT 

measures the attenuation of X-rays within the tissue into thin sections and a three-

dimensional (3D) can be reconstructed from a series of scans.  In the first-generation CT 

scanner, a pencil-like single beam X-source and the detector are moved in linear steps, and 

also rotated at regular intervals to obtain the slices at different angular orientations. In the 

second-generation, thin fan beam of X-rays were produced that improved the image quality 

by reducing the motion effects. In third and fourth-generation scanners, rotational motion 

of X-ray tube and detector arrays were introduced. Modern CT scanner now-a-days cover 

a large volume of tissue in a relatively short time. Image acquisition is done by employing 

multiple detector rings to scan several slices through the body during each rotation. These 

scanners are referred as spiral CT or helical CT or multi-slice CT scanners. Hundreds of 

images can be acquired in a single study with spiral CT technique. Image reconstruction 

after image acquisition has also seen significant advancements. The primary reconstruction 

algorithm used in CT scanners is filtered back projection. Radon first introduced the 

foundation for the reconstruction methods in 1917. In simple back projection, each X-ray 

that pass through the body is separated into equally spaced element and each element is 

contributed equally to the final attenuation values that is derived from different angular 

orientations. Filtered back projection is a convolution method that uses a one-dimensional 

integral equation for the image reconstruction. A sharpening filter is convolved with the X-

ray attenuation data prior to back projections to counter the blurring effects. The main 

advantage of this method is that image reconstruction can be done simultaneously while 

X-ray transmission data is collected.  
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In chronic obstructive pulmonary disease (COPD), CT imaging has revolutionized 

the diagnosis by allowing the quantification of pathological changes that are associated 

with airflow obstruction in the patients. CT imaging of the thorax lets us visualize the lung 

structure and parenchyma non-invasively. The measurement of the individual contribution 

of the emphysema and the airway disease components in COPD is not possible yet, 

however, several research groups used quantitative CT with a considerable success in 

phenotyping COPD population [18-20]. Most of phenotyping related to COPD population 

is either the determination of emphysema predominant or airway predominant disease, and 

is based on the morphological appearance of the lung tissue associated with structural 

changes and airflow limitation. The basis of quantification in CT is largely reliant on the 

intensity or Hounsfield Units (HU) values that constitutes the CT image. The HU values 

are proportional to the degree of x-ray attenuation and represents the density of the lung 

tissue. The HU value for the lung parenchyma ranges from -1000 HU (air) to approximately 

50 HU (blood). Air present in the lung appears dark and blood vessels appear bright in a 

typical lung CT scan, as shown in Figure 1.3. This information is valuable for the 

quantification of COPD related manifestations to the lung parenchyma. 

 

Figure 1.3: Typical axial, coronal, and sagittal views from the pulmonary CT scan 



www.manaraa.com

10  
 

Pulmonary emphysema involves damage to alveolar walls due to permanent 

enlargement of airspaces that are distal to the terminal bronchioles [22]. The parenchyma 

that is affected by emphysema loses its elastic recoil causing small airway collapse during 

expiration. This further increases the amount of air trapped inside the lungs. There are three 

subtypes of emphysema relative to the involvement of pulmonary acinus. Centriacinar 

emphysema predominantly appears in upper lobes and is associated with inflammation at 

the centers of pulmonary acinus [13]. Panacinar emphysema occurs uniformly throughout 

the acinar structures and is more common in lung bases. Distal acinar emphysema is 

primarily involved with the destruction near the alveolar ducts and sacs. The early detection 

of emphysema in mild COPD patients is challenging as it has been shown that it takes 30% 

of lung parenchymal destruction in order to see the changes in the spirometry diagnosis. 

Prior to CT, emphysema assessment required post-mortem specimens, therefore limiting 

the available data to analyze and understand the pathology. Emphysema is usually defined 

from the inspiration CT scan, whereas a similar technique can be used on the expiration 

scan to extract the percentage of air trapping in COPD patients. The most commonly used 

cutoff for the quantification of air trapping is -856 HU. The extent of emphysema is 

generally assessed by measuring the percentage of CT intensity values that are closer to air 

(-1000 HU). This method is often referred as CT densitometry technique. Hayhurst et al. 

[23] initially used the frequency distribution of HU values to distinguish patients with and 

without emphysema.  Later, Muller et al. extended this analysis and introduced the concept 

of “density mask” that highlights voxels that are below a fixed threshold [24]. A fixed 

threshold of -910 HU was initially used to estimate emphysema extent. Emphysema 

severity is defined as the relative percentage of voxels that are less than -910 HU, these 
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regions are called low attenuation areas (LAA). Coxson et al. used percentile cut off method 

on the frequency distribution curve to accurately estimate the emphysema extent [25]. 

Gevenois et al. later reported the use of -950 HU as a cutoff as it yielded strongest 

correlations with emphysema at microscopic and macroscopic levels [26]. However, the 

smaller size of emphysema lesions in mild COPD patients makes it challenging to diagnose 

the disease. Mishima and Coxson et al. used fractal analysis to find a relationship between 

the lesion size and its correlations with clinical outcomes in COPD patients [20, 27]. The 

latter study by Coxson et al. showed that the patients with larger emphysematous lesions 

had better outcomes after lung volume reduction surgery. A similar outcomes has shown 

by Flaherty et al. that the emphysema in the upper lobes as a best predictor of increased 

FEV1 after surgery. The National Emphysema Treatment Trail (NETT) confirmed these 

associations that patients with upper-lobe emphysema showed better outcomes after the 

lung volume reduction surgery. As the use of CT in emphysema quantification seen 

significant advancements in the clinical front, its dependency on the single cutoff made it 

less reproducible. Boedeker et al. showed that the CT reconstruction algorithm alone can 

make a difference of up to 15% in the emphysema quantification using the threshold 

technique after carefully controlling the patient’s lung volume. There are multiple other 

factors which might influence the measurement of emphysema on CT, such as respiratory 

status of the patient, CT acquisition protocol, slice thickness, and patient’s lung volume at 

the time of scanning. 

Pulmonary CT scans are also being increasing used to quantify airway disease in 

COPD patients. Wall area percent (WA %), defined as 100 times the airway wall area 

divided by total airway cross-sectional area, is used to estimate the morphological changes 
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in the airways in smokers. Hasegawa et al. showed strong correlations between distal 

airway wall thickness and lung function measurements. The expiratory-inspiratory CT 

attenuation ratio is also a popular method to estimate the degree of airflow obstruction in 

COPD patients [28, 29]. Several studies showed the percent low attenuation regions in the 

expiration CT image correlated better with the airflow limitation than the measurements 

from the inspiration CT images [30-32]. Matsuoka et al. [33] used the HU values in the 

range of -860 HU and -950 HU and showed there is significant correlation with airflow 

obstruction and change in low attenuation areas, especially in the presence of mild to 

moderate emphysema. However, the same study reported that there is no significant 

correlation in moderate to severe emphysema patients [33].  

CT density-based measures of COPD showed sensitivity in recognizing COPD 

presence and severity, however its dependence on single threshold and its limitations in 

detecting the early disease led to studies exploring other computer-aided diagnostic (CAD) 

approaches in COPD. A majority of CT-based quantification work in COPD is expected to 

serve as a “second opinion” to the clinician in confirming the diagnosis. One way to 

characterize the lung tissue in CT images is by analyzing tissue texture patterns [35-37]. In 

other words, texture analysis looks at spatial relationship between CT density values that 

are consistent with particular pathology across patients. This relationship provides more 

relevant information on the heterogeneity and morphology of emphysema lesions. A CAD 

system learns such patterns based on clinical ground truth/label and can be further used to 

label an entirely new image, if such patterns are present. Uppaluri et al. used the CT-based 

texture measures to classify emphysematous lesions in COPD patients [35-37]. The authors 

derived a list of texture measures from the individual patches in the CT image based on 
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five first-order statistics: mean, median, skewness, kurtosis, and standard deviation. This 

2D method, called as adaptive multiple feature method (AMFM), showed good sensitivity 

in discriminating normal from COPD patients. However, the AMFM method did not have 

a significant correlation with the pulmonary function measurements. Later, Xu et al. 

extended this approach to 3D tissue patches and was able to distinguish the normal 

appearing lung in non-smokers and smokers [38]. Several others extended this use of 

texture analysis and also evaluated the effectiveness of new measures such as gray-level 

co-occurrence matrices (GLCM), gray-level run-length matrices (RLM), local binary 

patterns (LBP), and Gaussian filter bank (GFB) [35-41]. Ginsburg et al. used GLCM and 

RLM based texture measures to discriminate normal lung tissue from centrilobular 

nodularity and lesions [42]. Ojala et al. proposed the use of 2D LBPs to define lung tissue 

texture and showed promising results in the classification [43]. Later, Sorensen et al. used 

LBPs and GFB feature sets to classifying emphysematous tissue at several stages of COPD 

[44]. They have successfully used a machine learning approach to train the computer a set 

of patterns based on the ground truth availability and tested the classifier on an entirely 

new dataset. Nishio et al. tested the effectiveness of LBP based texture measures that are 

derived from a low-dose CT image dataset in classification of emphysema subtypes [45]. 

Recently Teresa et al. used embedded principal component analysis (PCA) and achieved 

77% accuracy in discriminating emphysema subtypes [46]. Lately, there is also a lot of 

interest generating towards using convolutional neural networks to classify emphysema 

subtypes [47-49]. The advantage of using convolutional neural networks is that, the 

classifier can learn the measures automatically instead of using hand-crafted measures, as 

mentioned in the above studies.  
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1.4. CT Image Registration 

Although CT density and texture-based measures showed good sensitivities in 

characterizing lung parenchyma affected by COPD components, these measures do not 

provide any insights on mechanical properties of the lung tissue, which can be achieved 

through CT image registration techniques. The changes in pulmonary tissue mechanics in 

accordance to tissue destruction in COPD patients provides valuable information on lung 

elasticity and its ability to expel air from the lungs. Since many of the currently undergoing 

multi-center studies involving COPD research include CT image acquisition protocol of at 

least two volumes (full inspiration and full expiration/residual volume) [51-53], a proper 

extraction of useful information from the two images is highly desired. The first step in this 

process is to bring the two CT images taken at different levels of inspiration into the same 

coordinate system, allowing for voxel-by-voxel comparisons. This process is known as 

image registration or image matching. Image registration is frequently used in medical 

image processing to align images across modalities, to compare pre- and post-intervention 

changes, targeted radiotherapy applications, and segmentation tasks. 

 

Figure 1.4: Image registration is the task of finding a spatial transformation mapping of one 

image (p) to another (q), adapted from Ibanez et al. [54] 
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Figure 1.5: The framework of registration includes basic components as two input images 

(fixed and moving image), a transform, a cost function, an interpolator and an optimizer, 

adapted from Ibanez et al. [54] 

Image registration is a task of finding spatial relationship between two images. In 

medical image registration, it is a process of deforming the moving image pixels or voxels 

to biologically corresponding points in the fixed image. A typical image registration 

framework is shown in Figure 1.4. The major components in the framework include 

similarity measure, transformation metric, and optimizer. The user has to define a moving 

image and fixed image, where the moving image is the image that will be spatially 

transformed in to the same coordinate system as the fixed image.  The transformation 

metric represents the spatial mapping of points and establishes a correspondence for every 

pixel in the fixed image to a position in the moving image. A similarity measure is a cost 

function that measures the accuracy of the matching between two images and provides a 

quantitative criterion to the optimizer. Essentially, registration process can be seen as an 

optimization problem where a cost function C is minimized with respect to the 

transformation metric T.  
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The similarity measure is a key component of the image registration process. It 

measures the degree of similarity between the moving and fixed image and relays this 

information to the optimizer in the process. The mean sum-of-squared differences (SSD) 

is a commonly used metric. SSD computes the pixel-wise intensity differences at each 

iteration of the process and is heavily based on the assumption that the intensities shall 

remain same between the corresponding points of the images. However, this assumption is 

not true in the case of a lung image registration protocol, as the intensity or tissue densities 

do change due to the changes in airflow between inspiration and expiration. However, the 

measures such as normalized cross-correlation (NC) and mutual information (MI) metrics 

are insensitive to the CT density changes and are increasingly being used in lung image 

registration protocols. The lung tissue undergoes mechanical changes between breathing 

cycles that are highly heterogeneous in nature with the involvement of airways and blood 

vessels. The local expansion and contraction of the lung tissue varies and depends on the 

gravitational forces, body orientation, airway branching patterns, and underlying 

morphological changes caused by pulmonary disorders. To capture this non-rigid 

deformation of the lung tissue, a non-linear transformation function and a robust similarity 

measure that is insensitive to density changes is needed for the registration process. Lung 

image registration methods are mainly categorized into two types based on the similarity 

information used in the process: intensity-based and feature-based methods. Intensity-

based methods make use of natural contrast present between pulmonary structures to find 

the voxel-by-voxel correspondence between the moving and fixed image. Manually 

annotated landmarks that can be based on airway bifurcations and vessel tree structures are 

the most common intensity-based registration methods. A number of registration 
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algorithms have been proposed for lung CT images. Ourselin et al. used block matching in 

the registration process [55]. Han et al. proposed the use of 3D SIFT descriptors and mutual 

information metrics to develop a hybrid feature-based registration method [56]. Recently, 

Garbunova et al. developed a modified SSD measures by using lung volume and weight 

information to preserve the lung mass between the two volumes [57]. In this work, we have 

used the similarity measure proposed in [58, 59], which preserves the lung tissue volume 

and has demonstrated superior registration accuracy.  

The similarity measure from [58, 59] accounts for the lung CT intensity variations 

during the respiratory cycle, known as sum of squared tissue volume difference (SSTVD) 

[41, 58, 59]. The main objective of this measure is to provide a quantification criterion for 

the spatial match that has minimal local intensity variations. In lung CT images, the image 

voxel values are a function of tissue and air content. We can estimate the regional tissue 

volume and air volume from the HU values in the image. It is assumed that HUair is equal 

to -1000 and HUtissue is equal to 0, then the tissue volume (V) in a voxel at position X is 

estimated as 

 

                   𝑉(𝐗) = 𝑣(𝐗)
𝐻𝑈(𝐗) − 𝐻𝑈𝑎𝑖𝑟

𝐻𝑈𝑡𝑖𝑠𝑠𝑢𝑒 −  𝐻𝑈𝑎𝑖𝑟
= 𝑣(𝐗) 𝛽(𝐼(𝐗))                                           (1.1) 

where v(x) is the volume of voxel x. Similarly, the air volume 𝑉′ in a voxel can be 

estimated as  

         𝑉′(𝐗) = 𝑣(𝐗)
𝐻𝑈𝑡𝑖𝑠𝑠𝑢𝑒 − 𝐻𝑈(𝐗)

𝐻𝑈𝑡𝑖𝑠𝑠𝑢𝑒 −  𝐻𝑈𝑎𝑖𝑟
= 𝑣(𝐗) ∝ (𝐼(𝐗))                                    (1.2) 

 



www.manaraa.com

18  
 

Where the sum of ∝ (𝐼(𝑋)) and 𝛽(𝐼(𝑋)) is equal to 1 and 𝐻𝑈𝑡𝑖𝑠𝑠𝑢𝑒 and 𝐻𝑈𝑎𝑖𝑟 is 

assumed as 0 and -1000. Then  

∝ (𝑋) =  
−𝐻𝑈(𝑋)

1000
, 𝛽(𝑋) =  

𝐻𝑈(𝑋) + 1000

1000
 

 

Let 𝐼1(𝐗) and  𝐼2(𝐗) be the intensity values, 𝑣1(𝐗) and  𝑣2(𝐗) be the voxel volumes, 

and  𝑉1(𝐗) and  𝑉2(𝐗) be the tissue volume in the voxel of images  𝐼1 and  𝐼2 respectively. 

Then the SSTVD is defined as [60, 61] 

𝐶𝑆𝑆𝑇𝑉𝐷 =  ∫ [𝑉2(𝐗) −  𝑉1(𝒉(𝐗))]
2

.

Ω

𝑑𝑥                            

 𝐶𝑆𝑆𝑇𝑉𝐷 =  ∫ [𝑉2(𝐗)𝛽(𝐼2(𝐗)) −  𝑉1 (𝒉(𝐗)𝛽 (𝐼1(𝒉(𝐗))))]
2.

Ω

𝑑𝑥                                (1.3) 

 

The final step of the registration framework is choosing the optimization method 

that finds the best transformation matrix for the provided input images. In our work, we 

have used a limited-memory, quasi-Newton minimization methods with bounds (L-BFGS-

B) algorithm that is often used in high dimensional problems. A spatial multiresolution 

approach is employed to tackle the memory-intensive task of registering two 3-dimensional 

CT images. The idea is such that the registration is initially performed at a coarse scale 

with fewer pixels in the images and the resulting transformation is used in the next finer 

scale. This approach is carried until the finest scale. The B-spline transformation grid 

spacing is also refined from large to small with the spatial resolution. The use of the 

multiresolution approach was shown to improve speed, accuracy, and robustness in 

obtaining the final transformation matrix.  
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1.5. CT Registration-based Lung Mechanics 

Local lung tissue expansion and contraction measures can be estimated using image 

registration of pulmonary CT images taken at different levels of inflation. Reinhardt et al. 

used the Jacobian determinant of the transformation field to quantify the local volume 

changes in pulmonary CT images [59]. However, as the lung tissue is non-homogenous, 

the local volume change estimation is not enough to map the overall mechanical properties 

of lung tissue. The regional deformation is also depends on the orientation preference and 

its magnitude. In the next sections, we explain the measures that represents the mechanical 

properties of lung tissue, which can be derived from lung CT image registration methods. 

1.5.1. Local Volume Change (Jacobian determinant) 

This feature measures the local volume change under deformation from the 

inspiration to expiration registration procedure. The Jacobian determinant is a measurement 

to estimate the point wise volume expansion and contraction during the deformation [58, 

61].  In a 3D space, Let ℎ(𝑥) =  [ℎ1(𝑥), ℎ2(𝑥), ℎ3(𝑥)]𝑇 be the vector transformation and 

𝑢(𝑥) =  [𝑢1(𝑥), 𝑢2(𝑥), 𝑢3(𝑥)]𝑇 represents the deformation fields. The relationship 

between ℎ(𝑥) and 𝑢(𝑥) is shown as ℎ(𝑥) = 𝑥 + 𝑢(𝑥). The Jacobian of transformation J 

(h(x)) at 𝑥 =  (𝑥1,𝑥2,𝑥3)𝑇 is defined as 

𝐽(ℎ(𝑥)) =

|

|
1 + 

𝜕𝑢1(𝑥)

𝜕𝑥1

𝜕𝑢2(𝑥)

𝜕𝑥1

𝜕𝑢3(𝑥)

𝜕𝑥1

𝜕𝑢1(𝑥)

𝜕𝑥2
1 +  

𝜕𝑢2(𝑥)

𝜕𝑥2

𝜕𝑢3(𝑥)

𝜕𝑥2

𝜕𝑢1(𝑥)

𝜕𝑥3

𝜕𝑢2(𝑥)

𝜕𝑥3
1 +  

𝜕𝑢3(𝑥)

𝜕𝑥3

|

|

                            (1.4) 
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where J > 0, preserve orientation; J > 1, local expansion; J = 1, no deformation; 0 < J < 1, 

local contraction; J = 0, non-injective; J < 0, reverse orientation. 

The Jacobian at a given point gives important information about the transformation h near 

that point [62, 63]. If the Jacobian value is zero at x, then the transformation h is not 

invertible. If the Jacobian value is negative, then transformation reverses orientation. A 

positive Jacobian preserves the orientation.  

1.5.2. Strain Analysis 

Deformation patterns are characterized by the regional distribution of a strain or 

stretch tensor by the displacement fields from the registration process. A displacement 

gradient tensor 𝑢 can be calculated as the partial differentiation of the displacement vector 

with respect to the material coordinates. 

∇𝑢 =  

|

|

𝜕𝑢𝑥

𝜕𝑥

𝜕𝑢𝑥

𝜕𝑦

𝜕𝑢𝑥

𝜕𝑧
𝜕𝑢𝑦

𝜕𝑥

𝜕𝑢𝑦

𝜕𝑦

𝜕𝑢𝑦

𝜕𝑧
𝜕𝑢𝑧

𝜕𝑥

𝜕𝑢𝑧

𝜕𝑦

𝜕𝑢𝑧

𝜕𝑧

|

|

   (1.5) 

By applying strain tensor on the deformation gradient, the distribution of stress in the lung 

can be calculated. Linear strain along 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 axes are defined as 

𝜀𝑥 =  
𝜕𝑢𝑥

𝜕𝑥
, 𝜀𝑦 =  

𝜕𝑢𝑦

𝜕𝑦
, 𝜀𝑧 =  

𝜕𝑢𝑧

𝜕𝑧
  (1.6) 

where 𝑢 = [𝑢𝑥 , 𝑢𝑦,𝑢𝑧]𝑇 is the 3D displacement field. The concept of the strain is used to 

evaluate how much a given displacement differs locally from a rigid body displacement 

[64]. The strain tensors are represented as orthogonal eigenvectors by single value 

decomposition method. The maximum eigenvalue for each tensor is called maximum 
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principle strain. Strain analysis gives valuable information about the directionalities in local 

tissue deformation.   

1.5.3. Anisotropic Deformation Index 

Orientation preference also plays a role in the lung deformation in addition to the 

volume change [65]. Some regions may undergo no volume change with significant 

deformation and vice versa due to the compensation effects of lung elasticity. Anisotropic 

deformation index calculates the ratio of length in the direction of maximal extension to 

the length in the direction of minimal extension. This index is calculated by decomposing 

the deformation gradient tensor in to stretch and rotational component. 

               𝐹 =

|

|
1 +  

𝜕𝑢1(𝑥)

𝜕𝑥1

𝜕𝑢2(𝑥)

𝜕𝑥1

𝜕𝑢3(𝑥)

𝜕𝑥1

𝜕𝑢1(𝑥)

𝜕𝑥2
1 +  

𝜕𝑢2(𝑥)

𝜕𝑥2

𝜕𝑢3(𝑥)

𝜕𝑥2

𝜕𝑢1(𝑥)

𝜕𝑥3

𝜕𝑢2(𝑥)

𝜕𝑥3
1 +  

𝜕𝑢3(𝑥)

𝜕𝑥3

|

|

= 𝑅𝑈             (1.7) 

where R is the rotational tensor and U is the stretch tensor. The Cauchy-green deformation 

tensor is defined as  

 

𝐶 = 𝐹𝐹𝑇 = 𝑅𝑇𝑈𝑇𝑅𝑈 = 𝑈𝑇𝑈                                                   (1.8) 

 

To obtain the stretch information from U, C is decomposed using Eigen decomposition. 

After taking the square root of eigenvalues of C, we get the eigenvalues of U which are 

principal stretches. The ratio of maximum eigenvalue over the minimum gives the regional 

stretch information, which represents anisotropic deformation index [66]. The value of ADI 

is always greater than or equal to one. If the value is close to one, it means there is an 

isotropic expansion and if the value is big, it represents anisotropic deformation. 
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1.6. Application of Mechanical Analysis to COPD and Significance of Our Work 

CT image density and texture-based analyses have been shown to be successful in 

the quantification of individual components, such as emphysema and air trapping in COPD 

patients. However, none of these methods provide information of lung mechanics and 

ability of lung parenchyma between breathing cycle, which is vital in any pulmonary 

disorders. With the availability of inspiration and expiration CT image for every patient in 

the ongoing COPD related clinical trials, there is a clear interest in extracting biomarkers 

by using the information from both the images to interpret the disease better. Several 

authors have used voxel-by-voxel registered maps to capture the change in CT attenuation 

values and extracted ventilation maps, phenotypical characteristics in the population and 

separated emphysema from small airway disease component [57, 67-70]. Recently, Galban 

et al. used image registration to distinguish non-emphysematous lung tissue from 

emphysematous lung tissue, using a method known as the parametric response mapping 

(PRM) technique [67]. This technique is based on the assumption that the common voxels 

that are less than -950 HU in the inspiration image and -856 HU in the expiration image 

constitute to emphysematous tissue, whereas the voxels that became less than -856 HU are 

solely related to functional small airway diseases (fSAD). The voxel-by-voxel comparison 

is only possible when inspiration and expiration are brought to the same coordinate system. 

The authors have used non-rigid image registration technique to achieve this. Later, Bhatt 

et al. used the PRM technique and showed the functional small airway disease (fSAD) 

component is associated with FEV1 decline in COPD patients after 5-year follow up [71]. 

Similarly, Murphy et al. used image registration and showed that the information extracted 
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from the paired inspiratory and expiratory CT images provided better classification of the 

GOLD severity stages of COPD [70].  

Gorbunova et al. subtracted the registered baseline image from the follow up CT 

image of COPD patients to quantify and monitor COPD disease progression [57, 68]. The 

authors have quantified the local destruction of lung tissue between baseline and follow up 

in COPD population. Choi et al. used mass-preserving image registration to extract lung 

functional measures and showed significant differences between normal and severe asthma 

patients [72]. Petersen et al. used CT image registration protocols to capture the 

longitudinal changes in the airways of COPD patients [73]. Each centerline point of the 

airway was matched to the nearest centerline point in the image at the future time point 

using the registration process. The authors have showed that there is change in mean airway 

density (MAD) between time points and MAD is negatively correlated with the change in 

predicted FEV1 measure. Ederle et al. did similar analysis to evaluate the relationship 

between central airway dimensions and lung density in pulmonary CT images [74]. The 

authors found strong correlations between mean lung density and cross-sectional area of 

the trachea. Recently, Kim et al. used an in-house developed non-rigid registration 

technique to study the density change between inspiration and expiration CT of COPD 

patients [75]. The authors have showed that, in COPD patients, there is significant air 

trapping in the lung even though it is labeled as “normal” according to densitometry 

analysis. Matsuoka et al. paired the expiration CT to the inspiration CT image and showed 

the voxels between -500 and -950 HU are sensitive to spirometry measures of airflow 

obstruction in COPD patients [76]. Nishio et al. used a deformable registration technique 
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to evaluate the sole effect of air trapping component on the airflow limitation in COPD 

patients [77].  

The above mentioned studies show that the measures that are derived based on CT 

image registration provide significant information in understanding and phenotyping 

COPD population. In this thesis, we evaluate the effectiveness of CT image registration-

based lung mechanical measures in COPD diagnosis, severity and progression. We 

hypothesize that lung tissue mechanics in COPD patients were affected by the underlying 

disease components and quantification of these changes might be useful in identifying 

COPD presence and severity, phenotyping COPD population and also in monitoring and 

predicting disease progression. The use of lung mechanical measures that capture the local 

tissue expansion and contraction ability in COPD patient diagnosis is a significant 

contribution to the current research in COPD. Our measures and combined evaluations of 

quantitative CT measures related to COPD diagnosis may help interpret the disease better. 

1.7. Organization of the Thesis 

This thesis is divided into six chapters. The rest of the thesis is organized as follows. 

Chapter 2 presents our results on the effectiveness of registration-based lung mechanical 

measures in confirming COPD presence and severity. We have trained a classifier to 

predict COPD severity stages based on CT-based density, texture and lung mechanical 

measures and evaluated individual feature subset capability on a new test data set. Chapter 

2 is based on the following publication: 
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Sandeep Bodduluri, John D. Newell, Eric A. Hoffman, and Joseph M. Reinhardt. 

"Registration-based lung mechanical analysis of chronic obstructive pulmonary disease 

(COPD) using a supervised machine learning framework." Academic Radiology (2013). 

 

Chapter 3 presents the relationship between the derived CT-based lung mechanical 

measures and clinical outcomes in COPD patients. We create multiple prediction models 

that are adjusted for COPD patient demographic to evaluate the significance of lung 

mechanics in predicting clinical outcomes in COPD patients. Chapter 3 is based on the 

following article (manuscript in review): 

 

Sandeep Bodduluri,  Surya P Bhatt, Eric A. Hoffman, John D. Newell Jr., Carlos H. 

Martinez, Mark T. Dransfield, Meilan K. Han, and Joseph M. Reinhardt, for the 

COPDGene Investigators. Biomechanical CT Metrics Are Associated With Patient 

Outcomes in COPD. Thorax (accepted) 

 

Chapter 4 presents the role of CT-based lung mechanical measures in diagnosis of 

COPD. We have used a subset of COPD patients that had a discordance between pulmonary 

function test diagnoses and CT density-based diagnosis, tested the role of lung mechanics 

in confirming the diagnoses. Chapter 4 is based on the following publication: 
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Surya P. Bhatt., Sandeep Bodduluri, John D. Newell, Eric A. Hoffman, Jessica C. Sieren, 

Meilan K. Han, Mark T. Dransfield, Joseph M. Reinhardt, and COPDGene Investigators. 

"CT-derived biomechanical metrics improve agreement between spirometry and 

emphysema." Academic Radiology (2016). 

 

Chapter 5 presents our results related to the role of the normal lung tissue mechanics 

in predicting COPD progression. We use the mechanical characteristics of “normal 

looking” lung tissue based on CT-density and evaluate its importance in predicting FEV1 

decline in COPD patients. Chapter 5 is based on the following article (manuscript in 

preparation): 

 

Sandeep Bodduluri,  Surya P Bhatt, Eric A. Hoffman, John D. Newell Jr., Mark T. 

Dransfield, and Joseph M. Reinhardt, for the COPDGene Investigators. CT-based 

biomechanical measures of normal lung tissue and their role in disease progression. (in 

preparation). 

 

Chapter 6 includes discussion and future directions of our work.  
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CHAPTER 2 

IDENTIFICATION OF COPD PRESENCE AND SEVERITY USING CT 

REGISTRATION-BASED LUNG MECHANICS 

2.1. Introduction 

Chronic obstructive pulmonary disease (COPD), a growing health concern, is the fourth 

leading cause of death in the world [78]. COPD is primarily due to irreversible airflow 

obstruction caused by small airways disease and emphysema. Small airways disease causes 

structural changes within the lung with loss of airways, airway wall thickening and luminal 

narrowing. Emphysema leads to destruction of alveolar walls with decreasing lung elastic 

recoil, loss of blood vessels, airways and loss of extracellular matrix attachment to airway 

walls. While chronic smokers constitute the highest COPD susceptible population in the 

United States, worldwide people that are exposed to indoor air pollution using biomass for 

heating and cooking as well as other environmental  lung irritants  form another major 

group of COPD patients [10, 79]. Current diagnosis for COPD assessment is done by 

spirometry or pulmonary function testing (PFT), which is based on global lung volumes. 

The Global Initiative for Chronic Obstructive Lung Disease (GOLD) defines four severity 

stages (GOLD1-4) of COPD based on PFT measurements which lump all of the individual 

phenotypes associated with COPD into a single measure of gas flow at the mouth because 

PFT parameters ignore regional heterogeneity of the disease and the underlying disease 

components and disease etiology.  Critical to the development of novel, targeted treatments 

for COPD is the identification of individual phenotypes which have historically been 

lumped together under the fairly non-descript title, “COPD.”   
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Computed tomography (CT), has emerged as a tool for quantitatively characterizing 

parenchymal destruction and small airways involvement. CT allows regional assessment 

of the disease component and the CT derived measurements have been shown to correlate 

well with the pathology of the disease [18-20, 44, 50, 76].  CT is commonly used to measure 

the extent of emphysema in the lungs and can be more sensitive than spirometry in 

quantitating disease progression. Emphysema is quantified using CT densitometry 

techniques, which for example can calculate the percentage of voxels falling below a given 

Hounsfield Unit (HU) threshold in the inspiration image [25]. Expiratory CT has also been 

shown to be useful in calculating the extent of air trapping using CT densitometry 

techniques [13, 32, 33]. However, density measurements are influenced by CT 

reconstruction algorithm or other technical parameters and are dependent on the single 

threshold value [80]. CT image texture also plays an important role in characterizing lung 

tissue and its pathologies. Uppaluri et al. proposed the 2D adaptive multiple feature method 

(AMFM), which captures textural patterns on the CT image. This method has shown good 

sensitivity in characterizing lung tissue [35-37]. Later, an extension of this method to 3D 

by Xu et al. further showed good sensitivity in discriminating smoker and nonsmoker 

subjects [38]. Sorensen et al. proposed a multi-scale Gaussian filter bank approach to define 

the texture on the CT images and has shown better discrimination of COPD and normal 

subjects with good correlations to the lung function measurements [44, 50]. Although 

density and texture based features serve to map lung destruction and remodeling, these 

measures do not provide insights into the mechanism of disease onset or disease 

progression.  Mishima et al. have suggested that once emphysema has been initiated with 

the appearance of small, regionalized tissue destruction, disease progression occurs, in part, 
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because of mechanical factors serving to cause small holes to converge rather than new, 

isolated small holes emerging [20]. It is important that new imaging-based metrics provide 

maps of parenchymal mechanics to allow for an improved understanding of subject-

specific alterations in lung mechanics and regional parenchymal stresses.  

Mechanical analysis on a regional level can be done from CT images by image 

registration of a pair of scans at different inflation levels. Regional ventilation 

measurements from the registration of inspiration and expiratory CT have been shown 

useful to determine pulmonary function in COPD subjects [70]. Previously, we have 

developed methods to estimate regional lung tissue expansion and contraction using image 

registration and biomechanical analysis, and have shown these measures compare well with 

the other indices of lung function [59]. In this study it has been our hypothesis that these 

regional lung tissue estimates from the image registration will provide valuable information 

on lung function changes in COPD subjects. We propose a biomechanical feature set 

comprising three registration based metrics of lung function to describe COPD presence 

and severity. We also hypothesize the combination of density, texture and biomechanical 

features can be used to evaluate the severity of COPD more accurately than the individual 

usage of the feature sets, thus leading to more descriptive measures of the disease.  We 

have used a machine learning framework to evaluate the performance of the obtained 

biomechanical feature set and compared it to the density and texture based feature sets. 

Correlations with the PFT parameters and health status metrics were also reported. 
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2.2. Materials and Methods 

2.2.1. Dataset 

A database of 162 subjects with varying distribution of COPD severity and nonsmoker 

subjects without COPD were used in this study. All the subjects were approved by the 

institutional review boards and provided written consent for participation in the study. The 

distribution of the subjects was: 27 nonsmokers, 30 GOLD 0, 29 GOLD1, 29 GOLD2, 28 

GOLD3, and 19 GOLD4. These subjects were selected from the Iowa Cohort of the 

COPDGene study. The COPDGene Study is a multi-institutional research focused on 

COPD and other smoking related pulmonary diseases [reference ISBN 1541-2563 

(Electronic). All the patients in this study completed spirometry, health related quality of 

life questionnaires and CT scanning of the lungs at full inspiration and expiration.  

2.2.2. Data Collection 

The COPDGene protocol included the collection of demographic information, smoking 

history, using self-administered questionnaires. Health related quality of life is estimated 

using St. George’s respiratory questionnaire (SGRQ), which comprises four categories 

(symptoms, activity, impact and total score) with scores in each category ranging from 0 

to 100. The higher the score the more severe the disease. Spirometry was performed 

following the American Thoracic Society guidelines. The metrics reported include forced 

expiratory volume in 1 second (FEV1), which is the volume of gas forcibly exhaled during 

the first second of the expiration maneuver, and forced vital capacity (FVC), which is the 

total volume of gas forcibly exhaled after a full inspiration. The demographic information 

and PFT measures are shown in Table 1. 
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2.2.3. CT Image Acquisition 

CT scans were acquired at the University of Iowa with either a 64 or 128 multidetector CT 

scanner (Somatom Sensation 64 or Somatom Definition FLASH; Siemens Medical 

Solutions, Erlangen, Germany) following the COPDGene protocol. Images were acquired 

with the patient in the supine position during a single breath hold at full inspiration (total 

lung capacity (TLC)) and a single breath hold at normal expiration (functional residual 

capacity (FRC)). The scans followed an imaging protocol with a peak tube voltage of 120 

kV; tube current time product of 200 mAs for TLC scans and 50 mAs for FRC scans; gantry 

rotation time of 0.5s; and pitch a pitch of 1. The images were reconstructed at B31f kernel 

with a slice thickness of 0.75 mm and a reconstruction interval of 0.5 mm respectively, 

study protocol specifications for Siemens CT scanners [51]. 

2.2.4. Image Preprocessing 

CT inspiratory and expiratory images were downloaded, down sampled to reduce memory 

requirements, and stored in 16-bit Analyze (Mayo Clinic, Rochester, MN) format. CT 

images were first segmented to extract lung structures. Segmentation was carried out using 

a region growing technique where the given image is segmented into regions based on the 

discontinuities in the gray level and by the selection of initial seed points in the region. The 

flow of steps from the image preprocessing to machine learning experiments are shown in 

figure 1. 

2.2.5. Image Registration 

The inspiratory and expiratory CT images were registered for each subject. A lung mass 

preserving registration method was used to capture the large volume changes between these 

two images (9). This method uses a similarity metric called the sum of squared tissue 
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volume difference (SSTVD), which estimates the local tissue and air fraction by 

minimizing local tissue mass difference [58, 59]. This method has been shown effective in 

lung image registration protocols [59]. Displacement field information corresponding to 

the tissue deformation patterns in the lung from inspiration to expiration was extracted from 

the registration process. 

2.2.6. Feature Calculation 

In this study, we formed three sets of features from CT images: density based feature set, 

texture based feature set, and biomechanical feature set. 62 features were calculated from 

the inspiration and expiration images of a single subject. A summary of the features 

calculated is shown in figure 1. 

The density based feature set consists of two measures representing the extent of 

emphysema and air trapping in a subject. These measures were estimated using the 

threshold technique computing the percent of voxels below a certain threshold in CT 

images. Emphysema extent is expressed as the percentage of voxels below -950HU in the 

inspiration image. Air trapping extent is expressed as the percentage of voxels below -

856HU in the expiration image.  
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Figure 2.1: Flow chart explaining the steps involved from image acquisition to 

classification experiments 

 

In order to capture the textural patterns, a set of 45 features was computed using 

three local image descriptors at three different scales.  The local descriptors are based on 

the Gaussian function and its derivatives. The three local descriptors are: 1) convolution 

with Gaussian, which smooth the image and reduces the noise; 2) gradient magnitude of 

the Gaussian, which emphasizes edges and region boundaries; and 3) Laplacian of 

Gaussian, which computes second derivative of the image to highlight the regions of rapid 

intensity changes. These three filters were calculated at three different scales: 1.2 mm, 2.4 

mm and 4.8 mm (18). Three filters at three scales were applied to the expiration images in 

the dataset giving rise to nine filtered versions of the image. For each of the filtered images, 
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the mean, median, skewness, kurtosis, and standard deviation was computed for voxels in 

the lung region, thus producing a total of 45 features as a texture-based feature set. 

Examples of the nine filtered images of a GOLD1 and GOLD4 subjects’ expiration image 

are shown in figure 2. 

 

 

Figure 2.2.: Axial slices of a GOLD1 and GOLD4 COPD subject. a, d) Convolution with 

Gaussian at 1.2mm standard deviation b, e) Convolution with Gaussian at 2.4mm standard 

deviation c, f) Convolution with Gaussian at 4.8mm standard deviation g, j) Gradient 

magnitude of  Gaussian at 1.2mm standard deviation h, k) Gradient magnitude of Gaussian 

at 2.4mm standard deviation i, l) Gradient magnitude of Gaussian at 4.8mm standard 

deviation m, p) Laplacian of Gaussian at 1.2mm standard deviation n, q) Laplacian of at 

2.4mm standard deviation o, r) Laplacian of Gaussian at 4.8mm standard deviation 
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Figure 2.3.: Axial slices of a mild COPD (GOLD1) and severe COPD (GOLD4) subject. 

a) Jacobian map of GOLD1 subject b) Jacobian map of GOLD4 subject c) Strain map of 

GOLD1 subject d) Strain map of GOLD4 subject e) Anisotropic deformation index map of 

GOLD1 subject f) Anisotropic deformation of GOLD4 subject 

 

The mechanical feature set is comprised of features calculated from the image 

registration of inspiration scan to the expiration scan. Mechanical analysis on a regional 

level is done by finding out the local tissue deformation pattern from the correspondence 

of each voxel between inspiration and expiration image. Three measures were calculated 

in this feature set: Jacobian, strain information and anisotropic deformation index (ADI). 

The Jacobian or Jacobian determinant measures the local volume change under 

deformation from the inspiration to the expiration. The Jacobian determinant is a 

measurement to estimate the point wise volume expansion and contraction during the 

deformation (9, 24). If the Jacobian value is one at a given voxel, then there is no 

deformation happened. If the value is greater than 1, it represents local expansion. If the 
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value is less than 1, it represents local contraction.  The concept of the strain is used to 

evaluate how much a given displacement differs locally from the inspiration to the 

expiration (31). Maximum principle strain is computed using displacement fields from the 

registration process to represent strain information. Anisotropic deformation index 

provides the orientation preference of the lung deformation. It calculates the ratio of length 

in the direction of maximal extension to the length in the direction of minimal extension 

(3).  We have calculated five first order statistical features: mean, median, skewness, 

kurtosis and standard deviation for each of three feature images. A total of 15 features were 

computed to form the lung biomechanical feature set. The three biomechanical feature 

images: Jacobian, strain and ADI of a GOLD1 and GOLD4 subject are shown in figure 3. 

2.2.7. Feature Selection and Classification 

Optimal features were selected out of 62 features using a linear forward feature 

selection technique. This technique is a modified version of the sequential forward 

selection technique (32, 33). In the linear forward selection, the user will be able to limit 

the number of features that are considered in each step which in turn reduces the run time 

and the number of evaluations. With the selection of optimal set of features from each set, 

we have performed two classification experiments using the k nearest neighbor learning 

algorithm (KNN) (34). This algorithm is a non-parametric approach based directly on 

distances computed between the test and training data points. For any given test data point, 

KNN searches its nearest neighbors formed by the training sets. The classifier returns the 

selected number of neighbors, k, which are closest in the distance. The decision is made 

based on the majority vote of its neighbors, with the test point assigned to the group most 

common among its nearest neighbors, shown in figure 5. 
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2.2.8. Statistical Analysis 

Statistical experiments were performed using Microsoft Excel (Microsoft, 

Redmond, WA) and MATLAB software (MATLAB 7.12, The MathWorks Inc., Natick, 

MA, 2011). P values < 0.05 were considered statistically significant. Pearson’s correlation 

coefficients were calculated to investigate the correlation between the PFT parameters and 

the optimal CT based features. Spearman correlation coefficient was calculated to 

investigate the correlation between SGRQ scores and CT based features. 

First experiment is to classify a given subject into either COPD or non COPD class 

using the three feature sets. Nonsmoker and GOLD0 subjects were considered as non 

COPD group in this experiment. Feature selection is carried out on 90 subjects (30 non 

COPD/ 60 COPD) out of 162 subjects used in the experiment. Second experiment is to 

classify a given subject into their corresponding severity stage. Feature selection is carried 

out on 75 subjects (15/severity stage) out of 135 subjects ranging from GOLD0 to GOLD4 

stage.  

For both training and test subjects, the optimal features from the feature selection 

process were used in further classification experiments. Feature selection and classification 

experiments were implemented using WEKA machine learning tool (33). For training 

purposes, dataset was divided into training and testing sets and repeated ten times, with 

each split randomly selected each time.  For each split, area under receiver operator 

characteristic curve (AUC) is reported. The best k (number of neighbors) value in the kNN 

algorithm is selected by cross validation.  Predictions of test data are ranked by the 

probability of the class label and AUC for each class is separately calculated using one 

versus all approach.  By considering the number of instances of a particular class label as 
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the weight, average AUC of the ten splits is computed. Multiple regression analysis was 

performed using EXCEL software (Microsoft, Redmond, WA) to find the correlation 

between optimal features from each feature set and PFT measurements. Adjusted R squared 

correlation coefficient is reported for each combination of optimal features which takes the 

sample size and number of predictor variables into account. 

 

Table 2.1: Demographic information and PFT measures of the subjects in this study. The 

numbers reported are mean values with standard deviation in parentheses 

Parameters Non-COPD COPD 

Age 67.4 (6.79) 67.6 (5.87) 

Gender (M/F) 34/23 57/39 

Height (cm) 168.5 (8.66) 168.2 (9.02) 

Weight (kg) 81 (11.80) 79.9 (21.30) 

BMI 28.5 (4.08) 28.01 (6.26) 

Pack years 16 (8.30) 39.05 (12.21) 

FEV1% predicted 0.9 (0.13) 0.55 (0.27) 

FEV1/FVC 0.7 (0.05) 0.46 (0.15) 

GOLD STAGE 

(N/0/1/2/3/4) 

27/30/0/0/0/0 0/0/29/29/28/19 
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2.3. Results 

2.3.1. Correlation Results 

Pearson’s linear correlation coefficient, r, and corresponding P values were 

calculated between the PFT measurements and the optimal set of features from each feature 

set which were selected in the feature selection process. Spearman’s correlation coefficient 

was reported to find the correlation between SGRQ total score and CT based features. The 

results are shown in table 2.2 and all the correlations have shown statistical significance of 

P < 0.001. Air trapping measure in the density based feature set showed strong negative 

correlation with FEV1/FVC (r = -0.84) and also showed higher correlations than the 

emphysema extent measure. Texture based features have also shown strong correlations 

with FEV1/FVC measure. A strong positive correlation is seen between the mean Jacobian 

and PFT parameters (FEV1%, r = 0.80; FEV1/FVC, r = 0.76). Similarly, of all the features, 

mean Jacobian (r = -0.63) and median Jacobian (r = -0.63) features showed strong negative 

correlations with the SGRQ total scores. Median feature of Laplacian of Gaussian at 4.8mm 

(rho = -0.61) in the texture based feature set showed good negative correlations with the 

SGRQ total score whereas emphysema (rho = 0.46) and air trapping (rho = 0.56) scores 

were poorly correlated.   

2.3.2. COPD vs. Non COPD Classification 

As an initial experiment, the performance of biomechanical and the combination 

feature set in detecting the presence and absence of COPD was evaluated. The dataset is 

divided into two classes: COPD and non COPD. Classifier is asked to classify a given 

subject into either of these classes using the four feature sets. The results of this experiment 

are shown in table 2.3. Biomechanical feature set (AUC = 0.85) performed equally well 
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with the density (AUC = 0.83) and texture (AUC = 0.89) based feature sets. Texture (R2= 

0.72) based features showed higher correlations with FEV1/FVC measures whereas the 

biomechanical feature set (R2 = 0.71) showed higher correlations with FEV1% measure. 

All these correlations have shown a statistical significance of P < 0.001. 

                           2.3.3. COPD Severity Classification 

In the second experiment, COPD severity classification was performed using the 

four feature sets. The subjects used in this experiment ranges from GOLD0 to GOLD4 

stages of COPD. Classifier is asked to classify a given subject into their corresponding 

GOLD stage. The results of this experiment are shown in table 2.4. Biomechanical features 

were more effective in recognizing COPD severity than the density and texture feature sets 

by achieving an AUC of 0.81 and also correlated well with the FEV1% predicted measure 

(r = 0.71), which is a COPD severity measure from PFT diagnosis. The combination feature 

set (ALL) achieved an AUC of 0.80 by showing higher correlations with all the diagnostic 

measurements. All these correlations have shown a statistical significance of P < 0.001. 
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Table 2.2: Relationship between CT derived features and clinical diagnostic measures of 

COPD. Pearson linear correlation coefficient is represented with r and Spearman 

correlation coefficient is represented with𝝆. All the correlations have shown statistical 

significance of P < 0.0001 

Features 𝑟  FEV1% 𝑟  FEV1/FVC 𝜌  SGRQ 

Mean Jacobian 0.80 0.76 -0.63 

Median Jacobian 0.76 0.75 -0.63 

Skewness Jacobian -0.42 -0.52 0.35 

Standard deviation of Jacobian 0.74 0.64 -0.59 

Standard deviation of Strain 0.70 0.59 -0.53 

Median Gaussian at 1.2mm 0.67 0.76 -0.52 

Kurtosis Gaussian at 2.4mm -0.59 -0.60 -0.39 

Mean Gaussian at 2.4mm 0.68 0.77 -0.51 

Median Gaussian at 2.4mm 0.69 0.78 -0.51 

Skewness Gaussian at 4.8mm -0.57 0.60 0.41 

Skewness gradient magnitude at 1.2mm -0.55 -0.61 0.47 

Skewness gradient magnitude at 4.8mm -0.61 -0.66 0.55 

Median Laplacian of Gaussian at 4.8mm 0.70 0.72 -0.61 

Kurtosis Laplacian of Gaussian at 4.8mm 0.24 0.26 -0.2 

Emphysema (voxels below -950HU) -0.65 -0.73 0.46 

Air trapping (below -856HU) -0.78 -0.84 0.56 
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Table 2.3: Classification results of COPD/non COPD classification. AUC values reported 

from the ROC analysis with standard deviation in the parenthesis. Correlation results from 

multiple regression analysis between optimal features of density, texture, lung 

biomechanical features with PFT parameters and SGRQ scores. All the correlations have 

shown statistical significance of P < 0.001 

Feature Sets AUC 
FEV1%predicted 

(R2) 
FEV1/FVC (R2) 

SGRQ Total score 

(R2) 

Density 0.83 (0.04) 0.57 0.68 0.30 

Texture 0.89 (0.04) 0.58 0.72 0.37 

Biomechanical 0.85 (0.05) 0.71 0.68 0.41 

ALL 0.87 (0.05) 0.73 0.77 0.47 

 

Table 2.4: COPD severity classification results.  AUC values reported from the ROC 

analysis with standard deviation in the parenthesis. Correlation results from multiple 

regression analysis between optimal features of density, texture, lung biomechanical 

features with PFT parameters and SGRQ scores. All the correlations have shown statistical 

significance of P < 0.001 

Feature Sets AUC 
FEV1%predicted 

(R2) 
FEV1/FVC (R2) 

SGRQ Total score 

(R2) 

Density 0.76 (0.04) 0.57 0.69 0.26 

Texture 0.73 (0.03) 0.57 0.70 0.30 

Biomechanical 0.81 (0.03) 0.71 0.63 0.35 

ALL 0.80 (0.03) 0.72 0.73 0.35 
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Table 2.5: AUC values at each GOLD stage of COPD from COPD severity classification 

experiment. The standard deviation values are represented in parenthesis 

Feature Sets GOLD0 GOLD1 GOLD2 GOLD3 GOLD4 

Density 0.86 (0.05) 0.74 (0.05) 0.58 (0.09) 0.79 (0.04) 0.88 (0.06) 

Texture 0.80 (0.04) 0.77 (0.04) 0.57 (0.08) 0.69 (0.06) 0.85 (0.09) 

Biomechanical 0.82 (0.05) 0.74 (0.08) 0.78 (0.07) 0.84 (0.07) 0.96 (0.04) 

 

2.4. Discussion 

The two classification experiments conducted in this study show that the estimates 

of regional lung tissue expansion and contraction can serve as a useful parameter to 

describe COPD in pulmonary CT scans.  Such COPD quantification, based on regional 

lung mechanics, is a step forward in understanding the disease impact on the lung function. 

The relationship between the CT derived biomechanical features and clinical diagnostic 

measures (PFT measurements, SGRQ scores) were estimated by correlation, as shown in 

table 2. The jacobian features, which capture local volume changes, have shown strong 

correlations with FEV1% predicted (r = 0.80), FEV1/FVC measures (r = 0.76). It has also 

shown strong negative correlations (ρ=-0.63) with the SGRQ scores, which depicts the 

disease impact on patient’s quality of life. Overall, the biomechanical measures have shown 

strong correlations with the severity diagnostic measure, FEV1% predicted. This suggests 

a strong relation between estimates of lung mechanics and severity level of COPD. On the 

other hand, density and texture based features have shown higher sensitivity towards 

diagnostic measure, FEV1/FVC with strong correlations. 
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Density based features have been previously shown to be effective in COPD 

diagnosis [18, 28, 30, 81]. Earlier studies using CT textural patterns have also been shown 

to be successful in judging the presence of COPD [35-37, 44, 50]. The proposed lung 

biomechanical features were tested against these existing CT derived features. Moreover, 

in our study, all these three feature sets were combined to form a single feature set (ALL) 

and the combined performance was thereby evaluated. As a first classification experiment, 

a two-class problem was defined by dividing the dataset into two groups; COPD (GOLD1-

4) and non COPD (nonsmokers and GOLD0). The biomechanical features showed similar 

performance with the existing density and texture features in discriminating subjects with 

and without COPD, with an AUC of 0.85, as shown in table 3. Also, a good correlation 

with the PFT measurements and SGRQ scores was shown. However, it should be noted 

that texture based features performed reasonably better than the biomechanical features. 

Since, the subject range in this classification is from nonsmokers to GOLD4 (very severe); 

there is a possibility of minimal lung functional changes happening at the initial stages.  As 

a consequence, this may lead to a higher number of misclassifications between 

nonsmokers, GOLD0 and GOLD1 groups, resulting in overall reduction of the classifier 

performance with biomechanical features. In this study, density and texture based features 

proved their sensitivity in recognizing COPD presence or absence by achieving an AUC of 

0.83 and 0.89. The optimal features from these two feature sets showed strong correlations 

(R2=0.68, 0.72) with the diagnostic measure, FEV1/FVC.  

In the second experiment, a five class problem was then defined to categorize 

COPD subjects into their corresponding GOLD stage. Biomechanical features are more 

effective in COPD severity classification (AUC = 0.81) than the density (AUC = 0.76) and 
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texture (AUC = 0.73) feature sets, as shown in table 4. The strong correlations with FEV1% 

predicted show the sensitivity of biomechanical features to the level of COPD severity. 

Another interesting observation that can be made from this experiment is the performance 

of these features at different stages of the disease. In table 5, the AUC values of the feature 

sets in classifying each severity stage of COPD is shown. It shows that the biomechanical 

feature set performance is improved at the later stage of the disease than at the initial stages. 

All the feature sets were less effective in classifying GOLD1 and GOLD2 stage subjects. 

Especially, in classifying GOLD2 subjects, lung biomechanical features are more sensitive 

than the density and texture based features. This suggests the possibility of major lung 

functional changes at GOLD2 stage, which were captured by lung biomechanical features. 

This shows that the lung mechanics provide valuable information at later stages of the 

disease which was not possible to capture using the density and textural features. 

In both the experiments, another feature set (ALL) is evaluated, which is formed by 

combining all the three feature sets together. While recognizing COPD presence or absence 

in the first experiment, ALL achieved similar AUC (0.87, table 3) but it has shown better 

correlations with the PFT measurements and SGRQ total scores. Similarly, in the second 

experiment (table 1.4), adding biomechanical features to the density (AUC = 0.76) and 

textural features (AUC = 0.73), further showed an improvement in the classifier 

performance (AUC = 0.80). Also, there is a strong correlation with the clinical diagnostic 

measures of the disease. This shows biomechanical features add useful measures to the 

density and texture based features for more accurate diagnosis of COPD severity from CT 

images. The proposed features performed comparatively well with the previous methods 

of COPD diagnosis and severity classifications. The adaptive multiple feature method 
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(AMFM), proposed by Uppaluri et al., based on textural patterns of 2D CT images achieved 

an accuracy of 100% in classifying normal and severe emphysema subjects but with no 

significant correlation with PFT measures of emphysema [35-37]. The extension of 2D 

AMFM to 3D AMFM proposed by Xu et al. showed better results in discriminating normal 

smoker and nonsmoker lung parenchyma [38].  Another texture based approach proposed 

by Sorensen et al. based on Gaussian filter versions of CT, achieved an AUC of 0.713 in 

classifying COPD and Non-COPD subjects (18). In COPD severity classification, 

registration based ventilation measures proposed by Murphy et al. achieved 67% 

classification accuracy [70]. In COPD diagnosis and severity experiments, the 

biomechanical feature set achieved an AUC of 0.85 and 0.81, as shown in table 2.3 and 

2.4, and also correlated well with the PFT measures and SGRQ scores. However, in 

addition to the density and texture based features that were used in this study, there are 

several other CT derived features providing robust quantification of COPD [45, 49, 82]. 

The texture based feature set consists of only three basic Gaussian filtered versions of the 

image at multiple scales. The number of features used in this study was less which gives a 

definite scope in testing the effectiveness of several other features either individually or in 

combination with the proposed biomechanical features. A complete system consisting of 

all the CT derived features related to both emphysema and small airway disease may result 

in more accurate diagnosis of COPD. 
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2.5. Summary 

This study demonstrates the effectiveness of the registration based estimates of lung tissue 

expansion and contraction in COPD diagnosis. Three measures were extracted from the 

registered scans and the features based on these three measures showed good correlations 

with the pulmonary function. The classification experiments illustrated that the proposed 

measurements perform equally well or better than the density and texture feature sets in 

assessing COPD presence and severity. Also, the inclusion of biomechanical features to 

the density and texture improved the classifier performance with higher correlation to 

pulmonary function indices. With further testing on larger databases, the proposed 

approach may be used for accurate measure of the pulmonary function and disease. 
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CHAPTER 3 

RELATIONSHIP BETWEEN CT REGISTRATION-BASED LUNG MECHANICS 

AND PATIENT OUTCOMES IN COPD 

3.1. Introduction 

Airflow obstruction is the hallmark of chronic obstructive pulmonary disease 

(COPD); however, computed tomography (CT) is increasingly used to characterize and 

phenotype subtypes of COPD [83]. The major subtypes of structural lung disease visualized 

on CT, emphysema and thickened airway walls, are both independently associated with 

airflow obstruction [84, 85]. These metrics of disease on CT have also been shown to be 

associated with important patient reported and objective outcomes such as dyspnea,[86] 

quality of life, [87, 88] exercise capacity, [89, 90] the BODE (Body-Mass Index, Airflow 

Obstruction, Dyspnea, and Exercise Capacity) index,[87] and mortality [91]. A substantial 

number of patients with COPD, however, have significant discordance between spirometry 

and CT findings. We recently demonstrated that a biomechanical measure of structural lung 

disease (the Jacobian determinant, an elasticity measure of local lung volume change 

assessed through matching images acquired at multiple lung volumes) substantially 

explains the differences between static CT images and airflow obstruction on 

spirometry.[92, 93] However, it remains important to determine if the Jacobian determinant 

is associated with standard clinical measures of patient outcomes. Such determination will 

enhance its use in better phenotyping patients. We analyzed data from a large subset of a 

well characterized cohort of participants with COPD who underwent clinical, physiological 

and radiographic assessments. We hypothesized that the mean Jacobian determinant, an 
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indirect measure of lung elasticity, would provide additional explanation for the variations 

in clinically relevant outcomes including dyspnea, quality of life, functional capacity, and 

the BODE index, as well as mortality.  

3.2. Methods 

3.2.1. Patient Selection 

We analyzed participants enrolled in the Genetic Epidemiology of COPD 

(COPDGene) study, a large, ongoing, multicenter cohort study that includes current and 

former smokers aged 45 to 80 years, and without other chronic lung diseases except COPD 

and asthma. Demographics were collected as per the COPDGene protocol via self-

administered questionnaires. Details of the study protocol have been previously 

published.[51] Post-bronchodilator spirometry was performed using the ndd EasyOne 

spirometer to assess airflow obstruction. COPD was diagnosed using the ratio of forced 

expiratory volume in the first second (FEV1) to the forced vital capacity (FVC) of < 0.70, 

and severity categorized according to Global initiative for Chronic obstructive Lung 

Disease (GOLD) guidelines.[94] All participants provided written informed consent and 

the research protocol was approved by the institutional review board at each participating 

center. The first 1000 participants to enroll, and with complete image registration CT data, 

were included in the study reported here. 

3.2.2. Morbidity Data 

Respiratory-related quality of life was assessed using the St. George’s Respiratory 

Questionnaire (SGRQ).[95]  Scores were calculated for the three main subdomains of the 

SGRQ: symptoms, activities and impact. Total score ranges from 0 to 100, with higher 

scores indicating worse quality of life. The minimum clinically important difference 
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(MCID) for SGRQ is 4 units. Dyspnea was quantified using the modified Medical Research 

Council dyspnea score; the score ranges from 0 to 4, with greater score indicating worse 

dyspnea.[96] Exercise tolerance was assessed using the six minute walk distance (6MWD); 

MCID for the 6MWD is 26 m.[97]  The multidimensional BODE index was finally 

calculated using body mass index, FEV1 %predicted, mMRC and 6MWD; the scale ranges 

from 0 to 10, with greater scores indicating a higher risk of mortality.[98] We also obtained 

data on mortality on longitudinal follow-up. 

3.2.3. CT Image Acquisition 

 Volumetric CT scans were acquired with the subject in the supine position during 

a carefully coached breath-hold to either full inspiration (total lung capacity; TLC) or end 

expiration (functional residual capacity; FRC). The scanning protocol included a 

collimation, 0-5mm; tube voltage, 120kV; tube current, 200mAs; gantry rotation time, 0.5s; 

and a pitch, 1.1. The images were reconstructed with a standard kernel (dependent upon 

the make and model of the scanner) and a slice thickness of 0.75mm and an interval of 

0.5mm. 

3.2.4. CT Image-based Measures 

Densitometry: Using 3D Slicer software, we measured emphysema and gas 

trapping based on density mask analyses.[51] Emphysema was quantified by using the 

percentage of voxels at TLC with attenuation < -950 Hounsfield units (HU) and gas 

trapping was quantified as the low attenuation areas on FRC scan that are < -856 HU. We 

used Pulmonary Workstation 2 (VIDA Diagnostics, Coralville, IA, USA) to measure the 

wall area percentage of segmental airways (WA%) that represent airway remodeling.[51]  
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Image Registration: The full inspiration (TLC) and end expiration (FRC) scans were 

registered for each subject. A lung mass-preserving registration method was used to capture 

volume changes between the two phases of respiration.[99] A sum of squared tissue volume 

difference (SSTVD) method was used as a similarity metric. This method has been shown 

previously to be effective in lung image registration protocols.[92, 93] The transformation 

matrix from the registration process was used to derive regional tissue expansion and 

contraction measures between TLC and FRC volumes. In this study, we used the Jacobian 

determinant metric to represent regional deformation patterns in COPD patients. The 

Jacobian determinant measures the local volume change and estimates the pointwise 

expansion and contraction during deformation of the lung from TLC to FRC. This results 

in a deformation map that has values ranging from 0 to infinity. A Jacobian determinant 

value greater than 1 indicates local expansion whereas less than 1 indicates local 

contraction. A Jacobian determinant value equal to 1 indicates neither local expansion nor 

contraction. We used the mean of the Jacobian deformation map as a lung mechanical 

measure for each subject representing local deformation patterns between TLC and FRC 

volumes. Figure 1 shows representative Jacobian deformation maps for participants with 

different disease severity and quality of life 

3.2.5. Statistical Analyses 

We expressed all values as mean (standard deviation, SD). Pearson and Spearman 

correlation analyses were performed to assess the pairwise relationship of Jacobian 

determinant with SGRQ scores, BODE index, mMRC, 6MWD and FEV1. Association 

between Jacobian determinant and SGRQ was assessed using univariate and multivariable 

linear regression models after adjustment for age, sex, race, pack-years, BMI, FEV1, CT 
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emphysema, CT gas trapping, WA%, and CT scanner type. As there was an 

overrepresentation of zero BODE scores, we used zero-inflated Poisson regression analyses 

to test the association between Jacobian determinant and the BODE index, after adjustment 

for the above mentioned variables, except for FEV1 and BMI as they are part of the BODE 

index. Finally, to test the discriminatory accuracy of the Jacobian determinant in predicting 

the BODE score, we categorized the BODE score at its median (4 or less versus 5 to 10) 

and calculated the c-index for CT variables using receiver operating characteristics (ROC) 

analyses. The threshold of 4 was also based on the substantially worse survival for 

participants with BODE>4 in the original study.[98] We compared the c-index for the 

Jacobian determinant with that for percent emphysema in predicting BODE>4 scores.  In 

addition, the capacity of the Jacobian measure to predict a categorized BODE (0 to 4 versus 

5 to 10) was assessed using multivariable logistic regression classifier after adjustment for 

the above mentioned variables. The area under the curve and Akaike information criterion 

(AIC) were used to compare the capacity of models in predicting categorized BODE (0 to 

4 versus 5 to 10). We used the DeLong comparison method to compare the c-indices of 

different models. To calculate prediction of mortality on follow-up, we performed Cox 

proportional hazards analysis. Variables significant on univariate analysis at p<0.05 were 

entered into a multivariable Cox proportional hazards model to calculate adjusted hazards 

ratio for mortality for the Jacobian determinant; we forced CT scanner type into the model 

as this is clinically important.  All tests of significance were two-tailed, and we considered 

an alpha level of <0.05 as statistically significant. All analyses were performed using 

Statistical Package for the Social Sciences (SPSS 22.0, SPSS Inc., Chicago, IL, USA) and 

R statistical software (version 3.2). 
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Figure 3.1: Panels a and b show axial CT section and the corresponding deformation map 

respectively for a representative participant with GOLD 1 with low BODE index. Panels c 

and d show similar images for a representative participant with GOLD 4 COPD and high 

BODE index. The colors depict the Jacobian deformation map from full inspiration to end 

expiration and show the variability in regional tissue expansion patterns across both 

subjects. Jacobian determinant = 1 represents no deformation; >1 = local expansion; and 

<1 = local contraction. 
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3.3. Results 

Table 3.1: Baseline demographics, physiologic assessments, CT quantification of COPD 

and morbidity scores 

Parameter Mean (SD) 

Age (years) 64.6 (8.2) 

Female (%) 240 (49) 

African American (%) 78 (16) 

BMI (kg/m2) 27.5 (5.8) 

Smoking pack-years 52.9 (26.1) 

Current Smokers (%) 333 (68) 

FEV1 (L) 1.49 (0.7) 

FEV1 % Predicted 53.2 (22.0) 

FVC (L) 2.96 (1.0) 

FVC % Predicted 80.0 (21.3) 

FEV1/FVC 0.49 (0.12) 

CT Emphysema (%) 12.4 (12.1) 

CT Gas Trapping (%) 37.9 (20.3) 

Airway Wall Area (%), segmental airways 62.3 (3.1) 

SGRQ (Total Score) 37.6 (22.4) 

6MWD (m) 360 (145) 

BODE index# 3 (1-5) 

mMRC score# 2 (1-3) 
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Demographics: Of the first 1,000 participants to enroll, 562 participants had COPD GOLD 

stages 1 to 4. We excluded 72 participants due to image registration errors in boundary 

alignment. Table 3.1 shows the baseline demographics, physiologic assessments, CT 

quantification of COPD and respiratory morbidity scores. The mean age of the participants 

was 64.6 (8.2) years. The cohort was comprised of 250 (51.1%) males and 240 (48.9%) 

non-Hispanic Whites. Participants had a substantial cigarette smoking burden with mean 

pack-years of 52.8 (26.1); 336 (68%) were active smokers at the time of enrollment. The 

participants encompassed the spectrum of disease severity, with 62 (12.7%), 204 (41.6%), 

138 (28.2%) and 86 (17.6%) having GOLD severity stages 1 through 4 respectively.  

Correlation between the Jacobian measure and respiratory morbidity: Pair-wise 

relationship analysis between the Jacobian determinant and patient outcomes was 

performed. There was an inverse and statistically significant association between the 

Jacobian determinant and total SGRQ scores (r = -0.46; p<0.001), the BODE index (r = -

0.60; p <0.001), and mMRC scores (r = -0.41; p <0.001). There was a positive association 

between the Jacobian determinant and the six-minute walk distance (r = 0.47; p <0.001) 

and FEV1 (r = 0.60; p <0.001). 

CT measures and SGRQ: Table 3.2 shows univariate and multivariable associations 

between the CT metrics of emphysema, gas trapping, WA% and the Jacobian measure with 

SGRQ. On univariate regression, the Jacobian determinant was significantly associated 

with SGRQ (unadjusted regression co-efficient β=-38.1, 95%CI= -46.8 to -29.2; p<0.001); 

this relationship held true after adjustment for age, sex, race, BMI, FEV1, smoking pack 

years, CT emphysema, CT gas trapping, airway wall area (WA%), and CT scanner type. 

(β=-11.75, 95%CI= -21.6 to -1.7; p=0.020). 
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Table 3.2: Univariate and multivariable associations of mean Jacobian determinant 

measure with SGRQ 

Parameter Univariate Regression Multivariable Regression 

β 

(95%CI) 

P value β 

(95%CI) 

P value 

Age (years) -0.50 

(-0.7, -0.2) 

< 0.001 -0.68 

(-0.9, -0.4) 

< 0.001 

African American race 12.22 

(6.9, 17.5) 

< 0.001 6.73 

(1.6, 11.7) 

0.009 

Female sex -0.91 

(-4.9, 3.0) 

0.652 -1.69 

(-5.5, 2.1) 

0.390 

BMI (kg/m2) 0.21 

(-0.1, 0.5) 

0.219 0.39 

(0.0, 0.7) 

0.013 

FEV1 (L) -15.4 

(-17.8, -13.2) 

< 0.001 -10.65 

(-14.2, -7.0) 

< 0.001 

Smoking pack-years 0.11 

(0.03, 0.18) 

0.003 0.16 

(0.1, 0.2) 

< 0.001 

CT Emphysema (%) 0.57 

(0.4, 0.7) 

< 0.001 0.33 

(0.0, 0.5) 

0.002 

CT Gas Trapping (%) 0.44 

(0.3, 0.5) 

< 0.001 -0.01 

(-0.1, 0.1) 

0.990 

Airway Wall Area, (%) 2.51 

(1.8,  3.1) 

< 0.001 0.95 

(0.3, 1.5) 

0.002 

Mean Jacobian 

determinant 

-38.08 

(-46.8, -29.2) 

< 0.001 -11.75 

(-21.6, -1.7) 

0.020 

 

 

CT measures and 6MWD: The relationship between CT metrics and the 6MWD is shown 

in Table 3.3.  On univariate analysis, the Jacobian measure was significantly associated 

with distance walked (β=770.1, 95%CI= 600.0 to 940.1; p<0.001); this association was 

maintained after multivariable adjustment (β=321.15, 95%CI= 134.1 to 508.1; p<0.001) 

CT measures and BODE index: Table 3.4 shows the relationships between CT metrics 

and BODE index. The Jacobian determinant was significantly associated with the BODE 

index on univariate analysis (β= -1.77, 95%CI= -2.04 to -1.51; p<0.001), and after 

adjustment for age, sex, race, BMI, FEV1, smoking pack years, CT emphysema, CT gas 
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trapping, airway wall area percent,  and CT scanner type (β= -0.4, 95%CI= -0.8 to -0.01; p 

= 0.039). We also compared the utility of the Jacobian determinant in predicting BODE 

index 5-10 with logistic regression analyses  after adjustment for other CT variables, as 

well as age, race, sex, smoking pack years and CT scanner type.  

Table 3.5 shows that when compared to a model with traditional CT indices of 

COPD (Model A), including the Jacobian determinant (Model B) improves the prediction 

of greater BODE score (AIC 328.7 vs. 323.1; p < 0.001). On comparing CT indices in 

isolation after adjustment for age, race, sex, pack-years and CT scanner variability in the 

prediction of high BODE score (5 to 10), the c-index for CT emphysema was 0.80 (95%CI 

0.75 to 0.85; p=0.010) and 0.69 (95%CI 0.64 to 0.75; p=0.040) for WA%. The adjusted c-

index for Jacobian alone was 0.77 (95%CI 0.72 to 0.82; p=0.024). Combining traditional 

CT measures with Jacobian determinant resulted in greater accuracy in predicting high 

BODE score (5 to 10) with c-index 0.86 (95%CI 0.82 to 0.90; p<0.001), p<0.001 for 

comparison with all other models based on individual imaging measures.  

CT measures and mortality: We had follow-up data for 441 of the 490 participants for a 

median of 6.8 years (interquartile range 6.6 to 6.9). Of these, 99 (22.4%) died on follow-

up. On univariate analyses, all CT measures were associated with mortality; unadjusted 

hazards ratio (HR) for CT emphysema 1.03 (95%CI 1.02 to 1.05; p<0.001), CT gas 

trapping 1.03 (95%CI 1.02 to 1.04; p<0.001), WA% 1.08 (95%CI 1.01 to 1.15; p<0.001) 

and Jacobian determinant 13.16 (95%CI 4.52 to 38.46; p<0.001). After adjustment for age, 

pack-years of smoking, FEV1, CT emphysema, gas trapping, WA% and CT scanner type, 

the Jacobian determinant was associated with mortality (adjusted HR = 4.26, 95%CI = 0.93 

to 19.23; p = 0.06).   



www.manaraa.com

58  
 

Table 3.3: Univariate and multi-variate association of mean Jacobian determinant measure 

with six minute distance walked (6MWD) 

Parameter Univariate Regression Multivariable Regression 

β (95%CI) P value β (95%CI) P value 

Age (years) -2.75 

(-7.4, 1.9) 

0.251 -3.52 

(-7.7, 0.6) 

0.097 

African American -331.10 

(-431.6, -230.5) 

< 0.001 -290.51 

(-385.6, -195.3) 

< 0.001 

Female sex -74.66 

(-151.8, 2.49) 

0.057 -31.00 

(-103.6, 41.6) 

0.402 

BMI (kg/m2) -7.07 

(-13.6, -0.5) 

0.035 -10.79 

(-16.6, 41.6) 

< 0.001 

FEV1 (L) 315.72 

(270.7, 360.6) 

< 0.001 204.08 

(136.2, 271.9) 

< 0.001 

Smoking pack-

years 

-1.18 

(-2.6, 0.2) 

0.115 -2.14 

(-3.3, -0.9) 

< 0.001 

CT Emphysema 

(%) 

-8.19 

(-11.3, -5.0) 

< 0.001 -7.26 

(-11.8, -2.6) 

0.001 

CT Gas Trapping 

(%) 

-7.10 

(-9.0, -5.1) 

< 0.001 2.95 

(-0.3, 6.2) 

0.081 

Airway Wall Area 

(%) 

-40.24 

(-52.3, -28.2) 

< 0.001 -12.03 

(-23.5, -0.5) 

0.040 

Mean Jacobian 

determinant 

770.10 

(600.0, 940.1) 

< 0.001 321.15 

(134.1, 508.1) 

< 0.001 
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Figure 3.2. Receiver operator characteristic (ROC) curves in predicting BODE index (1-4) 

vs 5-10). All models are adjusted for age, race, sex, pack-years and CT scanner variability. 

Green represents c-index for Wall area% of segmental airways; Yellow = CT emphysema; 

Red: Jacobian determinant; Black = Combined CT model including CT emphysema, WA% 

and Jacobian determinant. 
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Table 3.4: Univariate and multivariable associations of mean Jacobian determinant 

measure with BODE index 

Parameter Univariate Regression Multivariable Regression 

β (95%CI) P value β (95%CI) P value 

Age (years) -0.004 

(-0.010, 0.002) 

0.189 -0.04 

(-0.014, 0.001) 

0.054 

African American 0.22 

(0.083, 0.350) 

0.001 0.16 

(-0.008, 0.325) 

0.059 

Female sex -0.01 

(-0.112, 0.082) 

0.783 0.15 

(0.040, 0.275) 

0.008 

Smoking pack-years 0.002 

(0.003, 0.004) 

0.013 0.00 

(0.001, 0.005) 

0.001 

CT Emphysema (%) 0.02 

(0.021, 0.029) 

< 0.001 0.01 

(0.003, 0.018) 

0.003 

CT Gas Trapping 

(%) 

0.02 

(0.023, 0.028) 

< 0.001 0.01 

(0.009, 0.020) 

< 0.001 

Airway Wall Area 

(%) 

0.08 

(0.064, 0.102) 

< 0.001 0.07 

(0.050, 0.089) 

< 0.001 

Mean Jacobian 

determinant 

-1.77 

(-2.044, -1.507) 

< 0.001 -0.41 

(-0.803, -0.019) 

0.039 

 

3.4. Discussion 

We demonstrated a strong relationship between the Jacobian determinant mean, a 

biomechanical elasticity measure of regional parenchymal volume change, and important 

patient outcomes including dyspnea, respiratory quality of life, functional capacity and the 

BODE index, a strong predictor of mortality. On multivariable analyses, we found that the 

effect size of a unit change in the Jacobian determinant is stronger than the effect sizes of 

static CT measures of COPD such as emphysema percentage, gas trapping and airway wall 

thickness, and also that adding the Jacobian determinant to traditional CT metrics improves 

the prediction of the BODE index, thus providing novel and independent information 

applicable to COPD phenotyping and prognosis.  
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It is well established that there is, at best, a modest correlation between FEV1, the primary 

measure of disease severity in COPD, and clinical outcomes such as respiratory health 

related quality of life and dyspnea,[100, 101] and FEV1 does not fully explain the morbidity 

associated with COPD. In this regard, our findings extend the results of other recent studies 

that demonstrated a relationship between CT metrics of COPD and clinically relevent 

outcomes. Although lung function impairment is correlated with poor functional outcomes, 

SGRQ is influenced by a number of factors that are not fully explained by FEV1 such as 

cough and exacerbations. Grydeland and colleagues demonstrated that CT indices of 

emphysema and airway disease improved the prediction of respiratory symptoms over 

spirometry alone.[86] Gietema et al. showed that both airway wall thickness and 

emphysema are independently associated with respiratory-quality of life, [88] and Martinez 

et al. reported that there was a stronger association between SGRQ and airway wall 

thickness than between SGRQ and CT emphysema.[87] On the other hand, they also found 

that the BODE index was influenced more by emphysema than by airway wall thickness. 

Other studies have also found significant associations between measures of emphysema 

and airflow obstruction, exercise tolerance and dyspnea.[84, 85, 89, 90, 102]  

The possible reasons for why the Jacobian determinant shows independent 

associations with outcomes merits discussion. FEV1 is a global measure of lung function 

impairment and is influenced by both airway narrowing and decreased lung elastic recoil 

associated with emphysema. However, in a given patient, it is usual to see multiple 

subtypes of emphysema such as centrilobular and panlobular emphysema with differential 

impact on lung function.[103-105]  The degree of CT emphysema does not translate 

linearly into airflow obstruction,[85, 92] and it is likely that different types and distribution 
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patterns of emphysema contribute differentially to airflow obstruction.[103-105] Although 

we did not study emphysema subtypes, the mean Jacobian determinant by offering a rough 

measure of lung elasticity likely reflects a more direct physiologic link between structural 

lung disease and the lung mechanics reflected by spirometry. Previous studies found that 

imaging metrics offered marginal incremental, albeit independent information, over that 

offered by spirometry in the prediction of respiratory quality of life. However, we showed 

that CT-based metrics derived from image-matching offer information that are not only 

independent and additive, but with effect sizes greater than FEV1 for all the outcomes 

studied. In addition, dyspnea contributes significantly to respiratory quality of life as well 

as reduction in functional capacity, and even patients with relatively preserved FEV1 can 

experience significant dyspnea and hence a poorer quality of life. This could be due to 

factors other than FEV1 such as poorer diaphragmatic position due to resting as well as 

dynamic hyperinflation, both of which might be reflected better by changes in lung 

elasticity than by static CT measures of emphysema and airway disease.  Our findings 

provide new insight into the complex pathophysiological basis and the heterogeneity of 

causes of changes in dyspnea and SGRQ. These findings are pertinent as dyspnea and 

SGRQ are frequently used as outcome measures in clinical trials of pharmacologic and 

non-pharmacologic therapies, once again highlighting the importance of phenotyping 

COPD patients.   
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Table 3.5: Logistic regression models for a BODE index (1-4) vs.  (5-10) 

Parameters Odds Ratio (95% CI) P-value AIC 

 

Adjusted multivariable model for CT measures 

 

 

CT Emphysema (%) 1.04 (1.00, 1.09) 0.034  

328.71 CT Gas Trapping (%) 1.06 (1.03, 1.09) < 0.001 

Airway Wall Area (%) 1.28 (1.15, 1.44) 0.288 

 

Adjusted multivariable model for CT measures  

with Jacobian determinant 

 

 

CT Emphysema (%) 1.06 (1.02, 1.11) 0.004  

323.81 CT Gas Trapping (%) 1.03 (1.00, 1.07) 0.041 

Airway Wall Area (%) 1.24 (1.12 1.40) < 0.001 

Mean Jacobian 1.78 (1.16, 2.76) 0.009 

 

We also showed that the Jacobian estimate of local lung volume change was 

significantly associated with the BODE index which predicts all-cause and respiratory-

specific mortality in COPD.[98] This is a novel finding and adds to the findings of previous 

studies which demonstrated a relationship between CT emphysema and both the BODE 

index and mortality.[87, 91, 106] It is unclear whether the poorer mechanics are a more 

sensitive reflector of underlying emphysema that has been shown to be independently 

associated with poor outcomes, or if the affected lung mechanics have an independent role 

in disease progression and mortality. Of note, lung volume reduction surgery improves 

symptoms and mortality in a subset of patients,[107] and it is plausible that the benefits of 

lung volume reduction are largely due to improved lung elasticity in the ipsilateral 

preserved lobe [108].  

One of the limitations of our study is that the CT scans were not spirometrically 

controlled.[109, 110] As varying respiratory effort can affect the reproducibility of image-
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registration metrics, participants were coached to maximum inhalation and end expiration. 

As this was a multicenter trial, a number of different scanners were used for image 

acquisition; however, we adjusted for scanner variability. For calculating the Jacobian 

determinant, CT scans were obtained at only two volumes. Although this limited our ability 

to assess regional differences in lung mechanics along the entire spectrum of lung inflation 

and deflation, [111] our metrics are applicable to clinically obtained scans without the 

excessive radiation risks that would incurred in acquiring dynamic scans. Our study was 

strengthened by the inclusion of participants enrolled in a large well characterized cohort 

of current and former smokers that included a high proportion of African Americans. 

3.5. Summary 

In conclusion, biomechanical metrics of local lung expansion and contraction offer 

better prediction of respiratory quality of life and the BODE index and offer incremental 

information beyond traditional measures of lung function and static CT metrics. Thus, the 

Jacobian determinant mean can add to our ability to phenotype COPD patients based on 

the complex pathophysiological heterogeneity that extends beyond lung function measures 

alone.  
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CHAPTER 4 

ROLE OF CT REGISTRATION-BASED LUNG MECHANICS IN COPD 

DIAGNOSIS 

4.1. Introduction 

The diagnosis of chronic obstructive pulmonary disease (COPD) is currently based 

on the detection of airflow obstruction by spirometry.[94] It is increasingly recognized that 

airflow obstruction as measured by impairment in the forced expiratory volume in 1 second 

(FEV1) does not fully explain the morbidity associated with the disease, and this functional 

definition can be complemented by anatomic measures of disease using widely available 

imaging modalities.[112] Computed tomography (CT) has become the gold standard in the 

quantitative assessment of the presence and distribution of emphysema, a major component 

of COPD, and relies on using a fixed Hounsfield threshold value below which all lung areas 

are deemed emphysematous in a CT scan obtained at full inspiration.[37] CT measures of 

emphysema correlate well with pathology,[113] and numerous studies have shown a strong 

correlation between spirometry and CT emphysema. [114-121] The agreement between CT 

emphysema and spirometry is however not perfect, and in some cases, CT densitometry 

may be more sensitive in detecting emphysema than spirometry.[115, 122]  

 It is our observation that many COPD patients have marked discordance between 

FEV1 and degree of emphysema on volumetric CT.[85, 123] Some subjects with severe 

airflow obstruction have mild emphysema on CT and conversely, some patients with severe 

emphysematous destruction of the lung have relatively mild spirometric impairment. While 

some of these differences, especially in the former group, are likely due to airway 
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narrowing, the reasons for this discrepancy between expected changes on spirometry and 

CT have not been systematically studied, particularly in the disproportionate emphysema 

group. Since airflow obstruction is due to a combination of airway narrowing and loss of 

elastic recoil due to emphysema, it is possible that static single-volume CT images do not 

capture lung mechanics sufficiently to explain lung function defects. We hypothesized that 

biomechanical measures of regional lung tissue expansion and contraction using image 

registration applied to paired inspiratory and expiratory CT scans will provide a link 

between CT-derived quantitative measures and spirometry. Through a demonstration of 

this link, we seek to provide an improved understanding of patient specific links between 

the presence and distribution of quantitative emphysema and airflow obstruction.  

4.2. Materials and Methods 

4.2.1. Data Collection 

Data for this study was acquired from the Genetic Epidemiology of COPD 

(COPDGene) study; this is a large multicenter study of current and former smokers aged 

45 to 80 years. Details of the study protocol have been previously published.[51] Post 

bronchodilator spirometry was performed using the ndd Easy-One spirometer to assess 

airflow obstruction.[124] COPD was diagnosed based on a fixed threshold for the ratio of 

FEV1 to the forced vital capacity (FVC) of <0.70; disease severity was graded according 

to the Global initiative for chronic Obstructive Lung Disease (GOLD) guidelines.[94] 

Reference values for spirometry were drawn from the National Health and Nutrition 

Examination Survey (NHANES) III cohort.[125] Volumetric CT scans were acquired with 

the subject in supine position during a carefully coached breath hold to either full 

inspiration (total lung capacity, TLC) or end tidal expiration (functional residual capacity, 
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FRC); or at one center to full expiration (residual volume, RV).[51]  The scans followed 

an imaging protocol with collimation, 0-5mm; tube voltage, 120kV; tube current 200mAs; 

gantry rotation time of 0.5s; and pitch, 1.1. The images were reconstructed with a standard 

kernel with a slice thickness of 0.75 mm and a reconstruction interval of 0.5 mm. 3D Slicer 

software (www.airwayinspector.org) was used to measure emphysema and gas trapping. 

Pulmonary Workstation 2 (VIDA Diagnostics, Coralville, IA, USA) was used to measure 

airway dimensions. [51]. Emphysema was quantified by using the percentage of voxels at 

TLC with attenuation less than -950 Hounsfield Units (HU) (low attenuation area, 

%LAA950insp), and also as the HU value at the 15th percentile (Perc15). [51, 126] Gas 

trapping was calculated as the percentage of voxels at FRC with attenuation less than -856 

HU (%LAA856exp).[127] We used wall area percentage of segmental airways (WA%) and 

gas trapping to measure airway disease.[51] The COPDGene study was approved by the 

institutional review boards of all 21 participating centers, and written informed consent was 

obtained from each subject.  

4.2.2. Case Selection 

Subjects with GOLD stage I to IV disease, without physician-diagnosed bronchial 

asthma and with good quality expiratory images, were included. As there is no published 

data on the degree of emphysema to be expected for a given value of FEV1, we used the 

percentile method to assess discrepancy between CT and spirometry to derive a sample size 

of convenience and also to create two widely disparate groups by spirometry and CT 

emphysema. We arranged all subjects (n=2982) in ascending order of severity of airflow 

obstruction as assessed by percent predicted FEV1 to calculate the percentile values for 

spirometric abnormality; a second list was created by arranging all subjects in ascending 
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order of severity of CT emphysema as determined by the continuous measure Perc15 

percentile. Concordance between spirometry and CT was assessed by subtracting percentile 

ranking for CT from percentile ranking for spirometry. Those with values closest to 0 

(n=100) were considered “Matched” as they had expected ranking for spirometry compared 

to CT emphysema, and this group served as the reference group. Those with the greatest 

positive percentile ranking difference for spirometry compared to CT (n=100) were 

considered spirometry predominant, and those with the greatest positive percentile ranking 

difference for CT compared to spirometry (n=100) were considered CT predominant. 3 

subjects in the CT predominant group were excluded due to failure of image registration 

matching.   

4.2.3. Image Registration 

The inspiratory and expiratory CT images were registered for each subject, and 

expiratory image matched to inspiratory image. A lung mass-preserving registration 

method was used to capture volume changes between these two targeted lung inflation 

levels.[61, 93] A sum of squared tissue volume difference was used as a similarity metric. 

This similarity criterion aims to find a registration transformation that minimizes the local 

difference of tissue volume inside the lungs scanned at different pressure levels. This 

method has been shown to be effective in lung image registration protocols.[61, 66, 93] 

The final transformation matrix from inspiration to expiration was derived from the 

registration protocol and in turn used to extract displacement field information.  

Three measures were calculated from the registration process: Jacobian, strain 

information, and anisotropic deformation index (ADI). Jacobian measures the local 

volume change and estimates the pointwise volume expansion and contraction during the 
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deformation from inspiration to expiration. Jacobian has values from 0 to infinity. A 

Jacobian value of 1 indicates neither local expansion nor contraction. Values greater than 

or lesser than 1 represent local expansion and contraction respectively. Maximum principle 

strain was computed from the displacement field information to extract how much a given 

displacement differs locally from inspiration to expiration. Strain analysis expresses the 

geometric deformation caused by action of stress in the lung. ADI provides the orientation 

preference of lung deformation by calculating the ratio of length in the direction of maximal 

extension to the length in the direction of minimal extension within a unit volume of 1 

mm.[66] The larger the ADI value, more the anisotropy is with deformation. The co-

efficient of variation (CV) across the whole lung was calculated for each of these 

biomechanical measures to assess heterogeneity and dispersion. 

4.2.4. Statistical Analyses 

Univariate regression analyses were performed for CT variables with FEV1 to 

assess association, and those with p<0.05 were included in multivariable models.  

Multivariable regression analyses were performed to assess associations between FEV1 and 

CT metrics, after adjustment for age, race, sex, body mass index (BMI) and scanner type. 

Multicollinearity diagnostics were performed and variables with a variance inflation factor 

of greater than 10 (strain mean, ADI mean and ADI CV) were excluded from the model. 

Independent contribution of each covariate to the variance in FEV1 was calculated using 

squared semi-partial correlation coefficient (r2). 

Further, to assess differences in the discordant groups of interest, three categories 

were created using differences in percentile rankings: Catspir with predominant airflow 

obstruction on spirometry and minimal CT emphysema; CatCT with predominant CT 
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emphysema and relatively minimal airflow obstruction on spirometry; and Catmatched with 

matched FEV1 and CT emphysema. Two regression models were created with mentioned 

categories as outcome variables using multinomial logistic regression. CT variables 

significantly associated with FEV1 were entered into the models and all models were 

adjusted for age, race, sex, BMI, and CT scanner type. At this stage, %LAA950insp was 

substituted for Perc15 as a measure of emphysema as Perc15 was already used to derive 

the groups, and %LAA950insp is more commonly used clinically to quantify CT 

emphysema.  Model A comprised of %LAA950insp, %LAA856exp and WA%. 

Biomechanical measures (mean Jacobian, CV of Jacobian, and CV of strain) were added 

to the predictors in Model A to create Model B. With Catmatched as reference category, 

multinomial logistic regression was used to predict Catspir and CatCT. Model fit statistics 

are shown in terms of Akaike Information Criterion (AIC) derived from information theory. 

AIC is used to estimate the quality and model comparisons and is defined as: AIC = -2Lm+ 

2k, where Lm represents maximum log-likelihood and K is the number of variables in the 

model. AIC takes both goodness of fit and number of variables into account while 

penalizing the increase in number of variables and thus avoids over fitting scenarios. The 

smaller the AIC, the better is the model prediction. All analyses were performed using R 

statistical software (Version 3.0.1) and Statistical Package for the Social Sciences (SPSS 

22.0, SPSS Inc., Chicago, IL, USA). 
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4.3. Results 

The three categories were well separated by percentile differences for spirometry 

and CT emphysema (Supplemental Figure 1). The percentile difference in the Catspir 

category was -65.7 (SD8.2), range -93.5 to -53.2; difference in CatCT was 61.1 (7.8), range 

51.6 to 79.1; and in Catmatched was -0.04 (0.63), range -1.03 to 1.06 (p<0.001 for all 

comparisons). Representative cases are depicted in Figure 4.1. Baseline demographics, 

spirometry and CT features for the three categories are described in Table 4.1. Compared 

to those in the Catmatched, those with Catspir were younger and were more obese. There were 

significant differences in airway disease between the three categories, with the 

disproportionate spirometric category showing most airway disease.   

A number of CT metrics of lung deformation were associated with airflow 

obstruction. On univariate analyses, there was a significant association between FEV1 and  

Jacobian mean (regression co-efficient β = 2.49, 95%CI 2.17 to 2.81; p<0.001), Jacobian 

CV (β = 3.90, 95%CI 3.38 to 4.42; p<0.001), ADI mean (β = 0.25, 95%CI 0.20 to 0.30; 

p<0.001), ADI CV (β = 0.69, 95%CI 0.52 to 0.87; p<0.001), strain mean (β = 3.55, 95%CI 

3.16 to 3.94; p<0.001) and strain CV (β = -1.68, 95%CI -3.06 to -0.30; p = 0.02). Of these, 

after assessment of multicollinearity, Jacobian mean, Jacobian CV and strain CV were 

selected for inclusion in the multivariable model to predict independent associations with 

FEV1 (Table 4.2). We also assessed the relative independent contributions of the CT 

metrics and found that the Jacobian mean explained 7.6% of the variation in FEV1 

compared to CT emphysema which explained only 2.6%.  Wall rea% and Jacobian CV 

were other strong predictors, explaining 4.3% and 2.3% of the variance in FEV1, 

respectively.   
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Table 4.1: Demographic information, radiographic and spirometry measures 

Variables Catspir 

(n=100) 

CatCT 

(n=97) 

Catmatched 

(n=100) 

Age (years) 60.4 (7.8)** 65.0 (8.2) 64.5 (9.0) 

Sex (%Males) 60 (60) 69 (71) 57 (57) 

Race (% Non-Hispanic Whites) 74 (74)* 85 (88) 84 (84) 

BMI (kg/m2) 33 (7.3)*** 26.6 (5.2) 26.4 (6.0) 

Smoking pack years 57.3 (29.0) 51.4 (25.8) 50.4 (24.3) 

FEV1 (L) 1.15 (0.35)** 2.75 (0.68)¥ 1.45 (0.82) 

FEV1 % predicted 38.0 (9.0)¥ 92.6 (13.7)¥ 50.8 (26.6) 

FVC (L) 2.29 (0.63)¥ 4.48 (0.94)¥ 3.01 (0.94) 

FEV1/FVC 0.51 (0.10)* 0.61 (0.07)¥ 0.46 (0.17) 

%Emphysema (LAAinsp<-950 HU) 1.5 (1.2)¥ 17.3 (8.9) 19.4 (18.0) 

%Gas trapping (LAAexp<-856 HU) 20.5 (12.6)¥ 34.9 (11.8)** 44.5 (26.4) 

Wall Area% 65.1 (2.7)¥ 59.3 (2.4)¥ 62.2 (2.8) 

All values expressed as mean (standard deviation) unless other specified. *p<0.05  

**p<0.01 ¥p<0.001. Catspir = category with disproportionate spirometric abnormality. 

CatCT = category with disproportionate CT abnormality. Catmatched = matched CT and 

spirometric abnormalities. BMI = Body mass index. FEV1 = Forced expiratory volume in 

the first second. FVC = Forced vital capacity. LAAinsp<-950 HU  = Low attenuation areas 

<-950 Hounsfield Units at end inspiration. LAAexp<-856 HU = Low attenuation areas <-

856 Hounsfield Units at end expiration. Wall Area% = (wall area/total bronchial area)×100, 

calculated as the average of six segmental bronchi in each subject.  
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Table 4.3 shows a comparison of measures of lung mechanics between the three 

categories. The same measures of lung mechanics that were significant on univariate 

regression with FEV1, and after collinearity adjustments were included in the two 

multinomial logistic regression models shown in Table 4.4. Comparison of AIC between 

the two models shows that inclusion of biomechanical measures (Model 2) predicts the 

categories better than the model that contains only static single-volume based CT metrics 

of structural lung disease (Model 1), AIC 255.8 vs. 320.8. As worsening disease can result 

in increase in TLC, which in turn can compensate for increase in RV and tend to preserve 

FVC and thus FEV1, we also performed sensitivity analyses with addition of CT measured 

TLC to the above model, with no change in prediction of FEV1.  
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Figure 4.1: Panel A shows computed tomographic (CT) images for subject with severe 

airflow obstruction (FEV1 %predicted 32.6) but with relatively minimal emphysema (1.5% 

volume <-950HU on end inspiratory images). Panel B shows features for subject with 

severe emphysema on CT (20.8%) but with relatively minimal airflow obstruction (FEV1 

%predicted 99.6). Top row represents the overlay of emphysema voxels on the CT images. 

Middle row represents the overlay of Jacobian color map on the CT images from each 

category. Jacobian value (=1) represents no deformation; >1 represents local expansion; <1 

local contraction. Bottom row represents 3D visualization of emphysema voxels in each 

category with flow volume loop. 

 

 

 

 



www.manaraa.com

75  
 

Table 4.2: Multivariable linear regression for prediction of FEV1 

Variable β 95% CI p value 

Age (years) -0.017 -0.024 to -0.010 <0.001 

Male Sex -0.51 -0.64 to -0.39 <0.001 

LAA insp<-950 HU -0.025 -0.034 to -0.016 <0.001 

LAAexp<-856 HU 0.007 0.014 to 0.146 0.06 

Wall Area% -0.08 -0.10 to -0.05 <0.001 

Jacobian Mean 1.72 1.33 to 2.10 <0.001 

Jacobian CV 1.45 0.86 to 2.04 <0.001 

Strain CV 1.90 0.77 to 3.03 0.001 

FEV1 = Forced expiratory volume in the first second. CI = Confidence intervals. LAAinsp<-

950 HU  = Low attenuation areas <-950 Hounsfield Units at end inspiration. LAAexp<-856 

HU = Low attenuation areas <-856 Hounsfield Units at end expiration. Wall Area% = (wall 

area/total bronchial area)×100, calculated as the average of six segmental bronchi in each 

subject. CV = Co-efficient of variation. 
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Table 4.3: Biomechanical CT measures for the three categories 

 Catspir 

(n=100) 

CatCT 

(n=97) 

Catmatched  

(n=100) 

Jacobian Mean 1.38 (0.18) 1.73 (0.20)¥ 1.44 (0.23) 

Jacobian CV 0.21 (0.08)* 0.46 (0.16)¥ 0.25 (0.10) 

Strain Mean 0.36 (0.12)* 0.65 (0.15)¥ 0.41 (0.16) 

Strain CV 0.57 (0.07)¥ 0.61 (0.06) 0.62 (0.09) 

ADI Mean 1.03 (0.53) 3.20 (2.71)¥ 1.34 (0.94) 

ADI CV 1.06 (0.36)* 1.71 (0.69)¥ 1.25 (0.36) 

All values expressed as mean (standard deviation) unless other specified. *p<0.05  

¥p<0.001. CT = computed tomography. Catspir = category with disproportionate 

spirometric abnormality. CatCT = category with disproportionate CT abnormality. Catmatched 

= matched CT and spirometric abnormalities. CV = Co-efficient of variation. ADI = 

Anistropic deformation index.  

4.4. Discussion 

We show that using dual-volume based biomechanical measures of lung tissue 

deformation rather than static single-volume measures of CT emphysema considerably 

improves prediction of spirometric airflow obstruction and also concordance between CT 

and spirometry. This improved linkage between CT metrics and spirometry provides a 

validation of the mechanics-based measures derived from image matching, and offers the 

ability to link regional lung mechanics to spirometry which provides only a single metric 

reflecting a composite of regional lung differences. By providing a comprehensive map of 

regional lung mechanics coupled with regional maps of emphysema, patient selection for 
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therapies for severe emphysema can be better determined and outcomes can be evaluated 

in light of this new understanding of lung structure-function relationships.  

A number of studies have analyzed the correlation between static single-volume CT 

measures of emphysema and spirometric airflow obstruction. One large study examining 

this showed a correlation between the two of -0.76 when emphysema was defined at <-

950HU threshold.[84] While this degree of correlation is good, it leaves room for a 

significant amount of discrepancy. Emphysema is a heterogeneous disease and the 

distribution of lung disease affects spirometry. Studies that examined the relative 

distribution of emphysema by zone found that upper zone emphysema correlates better 

with the diffusing capacity of carbon monoxide whereas predominant lower zone 

emphysema correlates better with FEV1. [128-131] We previously showed that emphysema 

like changes in the right middle lobe correlate the least with spirometry.[132] There is also 

a differential effect of central versus peripheral involvement of the lung, with a greater 

correlation of central involvement with FEV1.[128] However, these studies do not provide 

a composite measure of emphysema that improves agreement with spirometry. While CT 

gas trapping as an indirect measure of small airway disease has a greater correlation with 

airflow obstruction,[85] this is likely significantly influenced by the degree of baseline 

emphysema in the preceding respiratory cycles.[83] 

We add to the literature by showing three additional measures that improve 

agreement between CT and spirometry. Not surprisingly, the spirometry predominant 

group had significantly greater airway disease. Perhaps of more interest is the CT 

predominant group in which subjects had substantial degrees of emphysema with relatively 

minimal airflow obstruction. The divergence in emphysema measures and expected 
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spirometry impairment is likely partly due to the fact that single-volume-based CT 

measures are static whereas spirometry is a dynamic measure.  By using image registration 

applied to matched pairs of inspiratory-expiratory CT scans, we show an improved 

agreement between dynamic spirometric measures and biomechanical CT measures. While 

measures of airways disease including differences in airway wall thickness and air trapping 

also account for some of the disagreement, we found that after adjustment for indices of 

airway disease, biomechanical measures account for considerable additional variability. 

Our findings suggest that the presence of CT emphysema may not always translate into 

airflow obstruction, and that not all emphysema translates into loss of elastic recoil equally.  

The image-matching-based metrics more directly link CT-based findings with the 

integrated mechanics associated with spirometry. 

We found that a greater value for the Jacobian mean predicts a higher FEV1. The 

Jacobian mean is reflective of the over-all volume change of the individual lung regions. 

Ju et al showed that greater degree of lobar heterogeneity of emphysema on single-volume 

CT images was associated with less airflow obstruction.[133]. We extend these findings by 

demonstrating that image-matching based measures of biomechanical heterogeneity 

(Jacobian and strain CVs) are predictive of lung function, and these biomechanical changes 

are provided on a lobar and sub-lobar basis. It is pertinent to note that the Jacobian CV and 

strain CV are more strongly associated with the prediction of the CatCT category, one in 

which there is significant CT emphysema but the spirometric abnormality remains 

relatively masked. Though we did not assess the type of emphysema qualitatively, 

panlobular emphysema tends to be more homogeneous, is associated with higher lung 

compliance, and is associated with a lower FEV1 for the same level of quantitative 
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emphysema of centrilobular distribution.[103, 104] Centrilobular emphysema tends to be 

more heterogeneous and is associated with lesser FEV1 reduction for a given degree of 

emphysema. This is especially relevant for subjects with very mild airflow obstruction who 

might harbor significant structural lung disease prior to development of spirometric 

abnormality. We speculate that more local heterogeneity indicates relative canceling effects 

of the pressure effects created by greater and lesser expansive lung regions, a form of local 

pseudo restriction. The Jacobian CV might be a novel measure of biomechanical lung 

heterogeneity that can explain a significant proportion of the discrepancy. Our findings 

have a number of potential clinical implications. The diagnosis of COPD has traditionally 

relied on demonstrating airflow obstruction on spirometry. CT emphysema has been 

proposed as a new metric of disease that provides complementary information but it has 

been observed that the amount of CT-based emphysema does not directly translate to the 

degree of airflow obstruction.[134] By providing CT-derived measures of regional lung 

mechanics to the more commonly used quantitative CT metrics derived from a single lung 

volume, we now provide a closer link between quantitative CT and spirometry.  As CT 

emphysema is being increasingly used for assessment of structural lung disease for 

interventions such as bronchoscopic lung volume reduction, patient selection might be 

better served by the inclusion of regional measures of lung mechanics to the list of measures 

assessed by quantitative CT. Addition of biomechanical measures prior to lung resection 

surgeries may also improve prediction of postoperative lung function. 

Our study has some limitations. First, CT scans were not spirometrically gated; 

however, patients were coached to maximum inspiration and end exhalation. Second, this 

was a multicenter study and hence a number of scanners were used to acquire the CT scans. 
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However, we did adjust for scanner variability in our analyses, and  emphysema and air 

trapping were assessed from the same lung volumes as those used for the biomechanical 

measures, thus linking these measures to each other, accounting, in part, for protocol 

differences and subject variability. Third, although we adjusted for airway disease by use 

of WA%, the current resolution of CT limits visualization of airways beyond the segmental 

level. There is also a growing understanding that WA% is a composite of changes in airway 

wall thickness and luminal dimensions and may not fully reflect peripheral airway 

disease.[135]  To address these issues, we also used gas trapping as a surrogate of small 

airways disease. Fourth, CT scans were obtained at only two volumes, thus limiting our 

ability to account for regional differences in lung mechanics reflected in the non-linearity 

of the pressure volume curve either on a global or regional basis.[111] With the 

considerable reduction in radiation doses afforded by evolving CT detector and x-ray gun 

technologies coupled with improved iterative reconstruction methods,[136, 137] improved 

details of mechanical characteristics of the lung, by utilizing dynamic imaging or greater 

numbers of lung volumes, may become more practical while limiting radiation exposure. 

Finally, even though we reduced the sample size to 300, this was intentionally done to 

examine the cases with the most discordance. This was necessary as there is no previous 

literature to guide us as to how much abnormality on CT predicts the abnormality on 

spirometry and vice versa. Our study also has a number of strengths. Sites were 

continuously coached in regards to the proper performance of lung volume coaching and 

CT protocol adherence. Study subjects were drawn from a cohort that is well characterized 

phenotypically, and hence included a large sample size and included a high proportion of 

African Americans 
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4.5. Summary 

In conclusion, compared to single-volume CT assessment of emphysema, 

biomechanical measures derived from dual-volume CT show improved agreement with 

airflow obstruction on spirometry. This has implications for disease detection, for the 

understanding of links between regional lung disease and spirometrically derived lung 

function, as well as therapy planning. 
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CHAPTER 5 

PREDICTION OF COPD PROGRESSION USING CT REGISTRATION-BASED 

LUNG MECHANICS 

5.1. Introduction 

Chronic obstructive pulmonary disease (COPD) is characterized by airflow 

obstruction, and the rate of decline of lung function is greater than age related changes in a 

substantial proportion of patients, even after smoking cessation [94]. COPD is the third 

leading cause of death in the United States and airflow obstruction is associated with 

significant morbidity and healthcare costs. Progression of disease in COPD is variable, and 

although some patients have a relatively slow rate of lung function deterioration, others 

suffer an inexorable decline resulting in significant symptoms, respiratory failure, and 

mortality [138]. Despite significant advances in phenotyping COPD and the development 

of markers to predict exacerbations and mortality [138, 139], there is unfortunately a 

distinct lack of biomarkers that can help identify early disease as well as predict disease 

progression [140].  

The dominant pathogenetic mechanisms for COPD have involved proteinase-

antiproteinase imbalance, oxidative stress and inflammation; however, biomarkers related 

to these pathways have not been shown to be useful. Recently, a computed tomographic 

(CT) metric of functional small airways disease has been shown to be associated with 

progressive lung function decline, and data suggests small airways disease may precede the 

development of emphysema [71, 141]. The forced expiratory volume in the first second 

(FEV1) is affected by both resistance to airflow in the small airways as well as the elastic 

recoil of the lung parenchyma. A less explored mechanism for emphysema initiation and 
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progression is mechanical forces and stress fatigue [142]. It is plausible that emphysema 

begets more emphysema, and hence regions of the lung adjacent to emphysematous regions 

are subject to abnormal forces of stretch during tidal respiration [142-147]. At end 

expiration, the alveolar walls are under significant mechanical stress, and cyclical breathing 

imposes additional mechanical forces on already weakened elastin and collagen fibers, 

which over a longtime can result in rupture of the alveolar wall in surrounding susceptible 

regions, effectively creating a penumbra [144, 147]. While, CT-based quantification of 

COPD has seen significant advances, the contribution of mechanical forces in the 

progression of emphysematous tissue destruction and subsequent quantification using CT 

images is needed. This can be achieved by CT image registration techniques.  

Using image registration on paired inspiratory-expiratory images, voxels on 

inspiratory images can be matched with corresponding voxels on expiratory images, and a 

biomechanical metric called Jacobian measure, an estimate of local lung expansion and 

contraction with respiration, can be calculated [59, 93]. We hypothesized that the Jacobian 

measure is associated with lung function decline, and that regions of the lung in the 

penumbra around the regions of emphysematous lung would have abnormal mechanics. 

Using this metric for estimating lung mechanics, we can assess the normal appearing area 

surrounding emphysematous regions but with abnormal mechanics, the mechanically 

affected lung (MAL). We also hypothesized that by enabling estimation of the regions 

subject to abnormal stretch, percentage MAL would predict lung function decline. 

 

 

 



www.manaraa.com

84  
 

5.2. Methods 

5.2.1. Dataset 

We included the subjects with confirmed COPD (GOLD 1-4) from the initial 2000 

subjects who had completed a 5-year follow up from the Genetic Epidemiology of COPD 

(COPDGene) study [51]; a large multicenter study of current and former smokers aged 45 

to 80 years. Post-bronchodilator spirometry was performed to assess airflow obstruction. 

COPD was diagnosed based on fixed threshold for the ratio of forced expiratory volume in 

one second (FEV1) to the forced vital capacity (FVC) less than 0.7; severity of the disease 

was graded based on Global Initiative for Chronic obstructive Lung Disease (GOLD) 

guidelines. Demographic variables such as age, gender, race, body mass index (BMI), and 

St. George’s respiratory questionnaire (SGRQ) scores were collected.  A written informed 

consent was obtained from each subject and the study was approved by the institutional 

review boards of all 21 participating centers. Baseline demographics and CT density 

metrics were shown in Table 5.1. The change in FEV1 between baseline and 5-year follow 

up for each subject was used as representative of disease progression. Volumetric CT scans 

were obtained at full inspiration (total lung capacity, TLC) and end-tidal expiration 

(functional residual capacity, FRC). Subjects with CT images acquired at residual volume 

(RV) instead of functional residual capacity (FRC) were excluded. The scans followed an 

imaging protocol with collimation, 0-5mm; tube voltage, 120kV; tube current 200mAs; 

gantry rotation time of 0.5s; and pitch, 1.1. The images were reconstructed at standard 

kernel with a slice thickness of 0.75 mm and a reconstruction interval of 0.5 mm. 3D Slicer 

software was used to measure emphysema and gas trapping. Airway dimensions were 

measured from Pulmonary Workstation 2 (VIDA Diagnostics, Coralville, IA, USA). 
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5.2.2. CT Image Registration 

The main task of image registration is to find the spatial relationship between two 

images. A moving image and a fixed image is defined prior, where the moving image 

represents the image being transformed into the same coordinate system as the fixed image. 

In this study, the inspiration image taken at TLC is the moving image and the expiration 

image taken at FRC is the fixed image. The points in the deformation matrix from the 

registration represents the amount of deformation occurred between inspiration and 

expiration at each point in the lung. A lung mass-preserving registration method was used 

to capture local volume changes between the two phases. A sum-of-squared tissue volume 

difference (SSTVD) measure is used as the similarity metric in the registration process. 

The SSTVD has previously shown to be effective in lung image registration protocols [58, 

59]. The Jacobian determinant of the deformation matrix provides point-wise tissue 

expansion and contraction measures between the two respiratory cycles. A Jacobian value 

greater than 1 at a lung voxel represents tissue expansion whereas the value at a voxel is 

less than 1, it represents tissue contraction.  

5.2.3. CT Measures 

Emphysema was quantified by using the percentage of voxels at TLC with 

attenuation less than -950 Hounsfield Units (HU) (low attenuation area, %LAA950insp), 

Gas trapping was calculated as the percentage of voxels at FRC with attenuation less than 

-856 HU (%LAA856exp). We also used wall area percentage of segmental airways (WA 

%) representing airway disease due to remodeling of the airways. 
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5.2.4. Emphysema and Normal Lung Tissue - Definition 

The deformed TLC image from the registration process is now matched with the 

FRC image, and is used to label the emphysema and normal lung tissue in each subject. 

Emphysema regions were defined as the voxels that are less than -950 Hounsfield Units 

(HU), the most commonly used threshold to define emphysema in CT scans [13]. The 

regions that are not part of emphysema tissue are defined as normal regions (Voxels greater 

than -950 HU). The sum of emphysema and normal regions constitute the entire lung mask. 

Tissue labeling is shown in Figure 5.1.  

5.2.5. Emphysema and Normal Lung Tissue - Spatial Relationship 

A distance map is created based on diseased regions in the lung for each subject. 

The regions that are labeled as emphysema were assigned a value of 1 while the rest of the 

voxels were assigned a value of 0. Euclidean distance analysis was used to compute the 

distance between every normal voxel to the nearest emphysema voxel. The closer the 

normal voxel to an emphysema voxel, the smaller the assigned distance to that particular 

voxel. We categorized the voxels that are in the range of 1 mm to 5 mm to the emphysema 

regions and further explored the influence of emphysema on the surrounding normal tissue 

at each step of distance using this analysis (shown in Figure 5.2).  
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Figure 5.1 Mask extraction framework. Red color represents emphysema voxels and 

green color represents normal voxels in the lung. 
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Figure 5.2. 3D distance map extraction framework. 

5.2.6. Statistical Analyses 

The baseline demographics are expressed as mean (standard deviation, SD). The 

trend of mean Jacobian measure in the normal regions across GOLD stages of COPD were 

shown using boxplots. ANOVA (analysis of variance) was performed to compare the 

normal tissue mean Jacobian values across GOLD stages. Tukey honest significant 

difference test was performed to compare the individual groups. Association between 

normal mean Jacobian in each subject with FEV1 was assessed using univariate and 

multivariate linear regression models after adjustment for age, sex, race, pack-years, body 

mass index (BMI), pack years, current smoking status, and CT scanning protocol. CT-
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based measures of emphysema, gas trapping, and segmental airway wall area thickness 

(WA %) were also included in the regression model. A similar univariate and multivariate 

regression analysis was performed to find the association between change in FEV1 after a 

5 year follow up and mean Jacobian of normal regions in the whole lung, normal regions 

with in 1 mm, 2 mm, and 3 mm of emphysematous tissue.  

 

Figure 5.3. (a) The percentage of CT voxels classified as emphysema and normal tissue 

based on CT density-based thresholds. (b) The mean Jacobian of the normal and 

emphysematous lung tissue in COPD subjects across GOLD severity stages. The groups 

are significantly different (p< 0.0001) based on the Tukey honest significant difference test 

and ANOVA analysis. 
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5.3. Results 

5.3.1. Demographics 

Of the first 2,000 participants who had completed a follow up study, 680 subjects 

were used in this study who had COPD GOLD stages 1 to 4. Table 5.1 shows the baseline 

demographics, physiologic assessments and CT measures of emphysema, gas trapping, and 

segmental airway wall thickness. The mean age of the subjects is 62.95 (σ = 8.38) where 

44 percent of subjects are female. The average pack years is 49.81 (σ = 23.89) where 37 

percent of subjects are current smokers.  

Table 5.1. Baseline demographics 

Parameters Mean (SD) 

Age 62.95 (8.38) 

Female (%) 44.00 

African-American (%) 24.55 

BMI 27.83 (5.67) 

Pack Years 49.81 (23.89) 

Current Smokers (%) 37.00 

FEV1 % predicted 58.81 (21.62) 

FEV1/FVC 0.52 (0.12) 

CT Emphysema (%) 12.42 (12.04) 

CT Gas Trapping (%) 36.55 (19.42) 

CT airway wall area thickness (WA %) 62.20 (3.05) 
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Table 5.2. Univariate and multivariable associations of normal mean Jacobian determinant 

measure with absolute FEV1 (n=680) 

Parameter Univariate Regression Multivariable Regression 

β (95%CI) P value β (95%CI) P value 

Age (years) -0.017 

(-0.024, -0.010) 

< 0.001 -0.017 

(-0.022, -0.012) 

< 0.001 

African American race -0.100 

(-0.230, 0.030) 

0.132 -0.209 

(-0.299, -0.120) 

< 0.001 

Female sex -0.597 

(-0.700, -0.493) 

< 0.001 -0.567 

(-0.641, -0.493) 

< 0.001 

BMI (kg/m2) -0.007 

(-0.010, 0.009) 

0.888 -0.016 

(-0.023, -0.009) 

< 0.001 

Smoking pack-years -0.001 

(-0.003, 0.008) 

0.201 -0.003 

(-0.001, 0.001) 

0.705 

Scanner -0.144 

(-0.305, 0.017) 

0.079 0.119 

(0.014, 0.224) 

0.026 

Smoking Status 0.276 

(0.162 0.390) 

< 0.001 -0.033 

(-0.124, 0.057) 

0.176 

CT Emphysema (%) -0.026 

(-0.031, -0.022) 

< 0.001 -0.015 

(-0.021, -0.010) 

< 0.001 

CT Gas Trapping (%) -0.019 

(-0.021, -0.017) 

< 0.001 -0.011 

(-0.015, -0.001) 

< 0.001 

Airway Wall Area, (%) -0.081 

(-0.098, -0.063) 

< 0.001 -0.064 

(-0.077, -0.050) 

< 0.001 

Coefficient of variation 

of the Jacobian 

determinant 

0.030 

(0.025, 0.035) 

< 0.001 0.099 

(0.052, 0.146) 

< 0.001 
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Table 5.3. Univariate and multivariable associations of normal mean Jacobian determinant 

measure at baseline with absolute change in FEV1 values after a 5 year follow up (n=680) 

Parameter Univariate Regression Multivariable Regression 

β (95%CI) P value β (95%CI) P value 

Age (years) 0.754 

(0.230, 1.279) 

0.004 0.268 

(-0.320, 0.858) 

0.370 

African American race -0.770 

(-11.034, 9.494) 

0.883 -6.080 

(-16.662, 4.501) 

0.259 

Female sex 18.601 

(9.828, 27.373) 

< 0.001 -7.852 

(-17.722, 2.017) 

0.118 

BMI (kg/m2) 0.831 

(0.053, 1.608) 

0.036 -0.333 

(-1.181, 0.513) 

0.439 

Smoking pack-years -0.088 

(-0.273, 0.096) 

0.351 -0.111 

(-0.292, 0.070) 

0.229 

Scanner 1.751 

(-10.992, 14.495) 

0.787 3.610 

(-8.617, 15.838) 

0.562 

Absolute FEV1 -22.722 

(-28.40,17.039) 

< 0.001 -40.416 

(-49.11, -31.720) 

< 0.001 

Smoking Status -11.026 

(-20.107, -1.944) 

0.017 -10.088 

(-20.709, 0.532) 

0.062 

CT Emphysema (%) -0.046 

(-0.421, 0.328) 

0.808 0.217 

(-0.383, 0.818) 

0.477 

CT Gas Trapping (%) -0.138 

(-0.352, 0.076) 

0.207 -1.249 

(-1.669, -0.830) 

< 0.001 

Airway Wall Area, (%) 1.316 

(-0.121, 2.759) 

0.073 -1.443 

(-3.054, 0.168) 

0.070 

Normal Mean Jacobian 

determinant 

-3.251 

(-22.097, 15.595) 

0.735 -4.122 

(-9.284, 1.039) 

0.117 
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Table 5.4. Multivariable associations between absolute change in FEV1 in mL per year and 

mean Jacobian of normal voxels at baseline with in 1mm, 2mm, and 3mm distant to the 

emphysematous tissue. 

 Parameters β (95%CI) p-value 

MODEL A CT Emphysema (%) 0.267 

(-0.337, 0.872) 

0.385 

 CT Gas Trapping (%) -1.277 

(-1.688, -0.866) 

< 0.001 

 Airway Wall Area, (%) -1.488 

(-3.097, 0.121) 

0.069 

 Mean Jacobian determinant of 

normal tissue with in 1mm 

-5.022 

(-10.003, -0.040) 

0.048 

MODEL B CT Emphysema (%) 0.266 

(-0.338, 0.870) 

0.388 

 CT Gas Trapping (%) -1.283 

(-1.697, -0.869) 

< 0.001 

 Airway Wall Area, (%) -1.500 

(-3.111, 0.110) 

0.067 

 Mean Jacobian determinant of 

normal tissue with in 2mm 

-5.084 

(-10.130, -0.038) 

0.048 

MODEL C CT Emphysema (%) 0.266 

(-0.345, 0.862) 

0.401 

 CT Gas Trapping (%) -1.283 

(-1.698, -0.866) 

< 0.001 

 Airway Wall Area, (%) -1.500 

(-3.115, 0.110) 

0.067 

 Mean Jacobian determinant of 

normal tissue with in 3mm 

-5.084 

(-10.108, 0.087) 

0.054 

*All models were adjusted for age, race, gender, pack years, smoking status, scanner 

protocol, BMI, and FEV1 at baseline 
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5.3.2. Mechanics of Normal Lung Tissue – Across GOLD Stages 

Figure 5.2 shows the distribution of mean Jacobian in the normal regions of the 

lung across COPD severity stages. Tukey comparison tests were performed and the mean 

Jacobian of normal lung tissue is significantly different between GOLD stages with a 

decreasing trend along the severity scale. Analysis of variance was performed and the 

differences between group means were significant (p< 0.001) 

5.3.3. Association with Baseline FEV1 

Table 5.2 shows univariate and multivariate association between the standard 

deviation of the Jacobian of the normal voxels in the whole lung and absolute FEV1 values. 

The heterogeneity of local tissue expansion is significantly associated with FEV1 in both 

univariate (β=0.030, 95%CI= 0.204 to 0.307; p<0.001) and multivariate (β=0.099, 95%CI= 

0.052 to 0.146; p<0.001) regression analysis. Multivariate model was adjusted for age, 

race, gender, BMI, pack years, smoking status, CT scanner protocol, CT emphysema, CT 

gas trapping, and airway wall thickness.  

5.3.4. Association with FEV1 Change Over Time 

Table 5.3 shows univariate and multivariate association between the mean Jacobian 

of the normal voxels in the whole lung at baseline and change in FEV1 values after a 5 year 

follow up. The normal mean Jacobian is not significantly associated with FEV1 change in 

the univariate analysis (β=-3.251, 95%CI= -22.097 to 15.595; p=0.735). While adjusted for 

age, race, gender, BMI, pack years, smoking status, CT scanner protocol, CT emphysema, 

CT gas trapping, and airway wall thickness: the normal tissue mean Jacobian approached 

near statistical significance (β=-4.122, 95%CI= -9.284 to 1.039; p=0.117). Table 5.4 shows 

the multivariate associations between absolute change in FEV1 and mean Jacobian of 
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normal voxels with in 1mm, 2mm, and 3mm distant to the emphysematous tissue. The 

mean Jacobian of voxels with in 1mm (β=-5.022, 95%CI=-10.003 to -0.040; p=0.048), 

2mm (β=-5.084, 95%CI=-10.130 to -0.038; p=0.048), and 5mm (β=-5.084, 95%CI=-

10.108 to -0.087; p=0.054) range is statistically significant with FEV1 change.  

5.4. Discussion 

We demonstrated that the mechanics of normal regions in the lung as derived from CT 

image registration techniques are significantly associated with FEV1 decline. The 

traditional labeling of normal lung tissue based on CT density thresholding technique might 

not depict a complete picture on functional aspects of these regions. We showed that the 

“normal-looking” regions with abnormal mechanics which are closer to emphysema 

regions, experiences significant deterioration in its functional ability with increasing 

severity of the disease. We refer to these regions as the mechanically affected lung (MAL). 

It is clear that the extent of diseased tissue increases with disease severity in turn decreasing 

the percentage of normal tissue in the lung. However, the influence of pathological tissue 

on the nearby normal tissue and its elasticity in COPD patients has not been studied before. 

Suki et al. proposed an emphysema progression mechanism stating that the collagen fibers 

in the emphysematous tissue becomes weaker over time and may lead to mechanical stress 

variations in the nearby alveolar walls [148, 149]. The authors have used a computer model 

of the lung tissue consisting a network of linearly elastic springs to compare the effects of 

mechanical force-based tissue destruction. The authors have showed there are clear 

structural differences between chemical-based breakdown of the tissue and force-based 

breakdown. Further, the heterogeneity and the size of emphysema clusters might play a 

role in the mechanical properties of the lung tissue. We examined this influence of 
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emphysematous tissue on the normal regions of the lung using CT image registration-based 

lung mechanics. The measure representing local tissue expansion or contraction ability, 

Jacobian determinant, has been previously shown to be effective in COPD diagnosis and 

also improved agreement between spirometry-based airflow obstruction and CT-based 

emphysema [92, 93]. We initially labelled the lung regions into either emphysema or 

normal tissue based on the CT densitometry techniques (emphysema represented by voxels 

<-950HU). We calculated the mean Jacobian of the normal regions in COPD subjects and 

grouped them according to their disease severity, as shown in Figure 5.3. Although the 

voxels are “normal-looking” on CT images based on the traditional densitometry 

techniques, the mechanical properties of the normal regions significantly diminishes with 

increasing severity. The extent of mechanically affected lung (MAL) increases with GOLD 

severity in COPD patients.  

We have shown previously that the CT derived lung mechanics were strongly 

correlated with patient outcomes in COPD and spirometry-based airflow obstruction 

measures [92], especially FEV1. In our first step towards understanding the normal tissue 

mechanical properties, we estimated the relationship between the normal tissue mechanics 

and absolute FEV1 values. The results are shown in Table 5.2. The standard deviation of 

the Jacobian of the normal tissue representing the heterogeneity of local tissue expansion 

is significantly associated with FEV1 in both univariate and multivariate regression analysis 

where the multivariate model is adjusted for demographics and CT measures of 

emphysema, gas trapping, and airway wall thickness. Along with the mechanical measures, 

CT derived measures were also shown significant association with FEV1. To our 

knowledge, the strong associations between CT-derived mechanical properties of normal 
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lung tissue and FEV1 has not been reported before. There is a clear need for further 

exploration on what makes the normal regions to transform into diseased regions over a 

period of time. To achieve this partly, we performed similar regression analyses but this 

time predicting the rate of FEV1 decline instead of baseline FEV1. The results are shown 

in Table 5.3. Although, there is no significant association between normal tissue mechanics 

and FEV1 change in univariate analyses (p=0.735) and multivariate analyses (p=0.117). 

We believe this might due to the fact that the overall percentage of mechanically affected 

lung (MAL) tissue is smaller when estimated in the entire lung.  

We further investigated the hypothesis that the emphysematous tissue would have 

greater effect on mechanical properties of nearby normal lung tissue than the regions that 

are located far from the diseased tissue. We tested this hypothesis by creating a distance 

map representing every normal voxel in terms of how far the voxel lies from the 

emphysematous voxel. We categorized the normal voxels into three categories: voxels that 

lie within 1mm, 2mm, and 3mm distant to the emphysematous tissue. We calculated the 

mean Jacobian of the voxels in each category representing their tissue expansion or 

contraction ability from inspiration to the expiration, and then performed regression 

analyses with FEV1 change values. The results are shown in Table 5.4. Unlike the overall 

normal mean Jacobian association, the voxels that are closer to emphysematous tissue are 

significantly associated with the rate of decline in FEV1. The strong associations with FEV1 

decline and mechanical properties of normal tissue that is closer to emphysematous tissue 

is worthy of discussion. This might add to our current understanding of COPD progression 

especially how emphysema regions transform from mosaic pattern to large clusters. If we 

are able to provide a quantitative metric of tissue expansion capability of the normal regions 
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of the lung, this might lead to early detection of disease and categorize early, mild, and 

rapid progression in COPD population.  

Although it can be reasonably argued that the labelling of normal tissue is solely 

based on emphysema component (voxels > -950HU) ignoring the contribution of airway 

disease and remodeling effects to the tissue, we adjusted for the CT-based gas trapping and 

airway wall thickness in all the multivariate regression analyses performed. Galban et al. 

proposed the parametric response mapping (PRM) technique to differentiate functional 

small airway diseased tissue from the emphysematous tissue in COPD patients [67] and a 

recent study have shown that the percentage of functional small airway disease in the lung 

is strongly associated with rate of decline in FEV1 using the same cohort we used in this 

study [71]. We plan to further explore the proposed spatial relationship analysis in regards 

to PRM based labeling of emphysema and airway disease. The main goal of our current 

study is to examine the effects of emphysematous regions on the surrounding lung 

parenchyma and how the mechanical properties of the normal tissue alter based on spatial 

location from the diseased regions. One of the limitation of our study is that the patients 

were not spirometrically gated during CT image acquisition, which might influence the 

density measures and registration-based lung mechanical measures. The participants in this 

study were coached to full inspiration and end expiration. Another limitation is the use of 

-950 HU as the density threshold to define emphysema, it is possible that the use of -910 

HU as the threshold might affect the current findings. We have chosen -950 HU since it is 

the most commonly used threshold [24].  
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5.5. Summary 

In conclusion, the mechanical properties of lung tissue gets altered in the presence 

of disease, although it is considered as normal based on the traditional CT density-based 

techniques. We introduced a new distance analysis and created spatial distance maps to 

evaluate the relative influence of emphysematous tissue on the mechanical properties of 

surrounding normal lung parenchyma. We showed that the tissue expansion ability of the 

surrounding lung parenchyma of the emphysema regions in the lung is significantly 

associated with baseline FEV1 and rate of decline in FEV1. The clinical applicability and 

the role of normal lung parenchyma in phenotyping COPD population and predicting the 

progression at early stages is yet to be explored.  
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CHAPTER 6 

DISCUSSION AND FUTURE WORK 

In this thesis, we evaluated the role of CT image registration-based lung mechanics 

in COPD in the following general areas: the identification of COPD presence and severity, 

the relationship with patient outcomes in COPD, the role of CT lung mechanics in COPD 

diagnosis, and the use of lung mechanics in predicting disease progression in COPD 

patients. Although the CT density-based and texture-based measures provide useful 

information on COPD related parenchymal destruction and airway remodeling, these 

measures do not provide insights into patient-specific alterations in lung mechanics and 

regional parenchymal stresses. Using the CT image registration-based lung mechanical 

measures, we evaluated their role in COPD presence, severity and progression.  

Chronic obstructive pulmonary disease (COPD) is currently the third-ranked cause 

of death in the United States and is associated with high morbidity and mortality [150]. It 

is estimated that 4.7 million deaths will be caused by COPD alone out of 68 million deaths 

worldwide by 2020 [78]. Although tobacco smoking is the most important risk factor of 

COPD, occupational exposure to dust, environmental air pollution, and genetic factors are 

also known risk factors. COPD is a progressive airflow limitation disorder and occurs due 

to a complex interplay between emphysema (tissue destruction), functional small airway 

disease (fSAD), and chronic bronchitis. Due to this heterogeneity nature of COPD, 

quantifying relative contribution of individual disease components and phenotyping 

accordingly is extremely challenging. In a recent study, it has been shown that there is a 

significant increase in the number of individuals who are diagnosed with COPD but never 

smoked [150], contradicting our traditional belief of COPD in non-smokers. According to 
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Global initiative for Obstructive Lung Disease (GOLD) guidelines, COPD diagnosis is 

considered in any individual with symptoms of dyspnea, chronic cough, and a history of 

risk factors for COPD. The presence of airflow obstruction assessed by post-bronchodilator 

spirometry is currently the gold standard for COPD diagnosis.  If the post-bronchodilator 

ratio of forced expiratory volume in 1 second (FEV1) to forced vital capacity (FVC) is less 

than 0.7, then COPD presence is confirmed. However, there is a widespread criticism on 

the use of this fixed ratio and several studies showed that the FEV1/FVC ratio 

underestimates the presence of COPD in younger patients and overestimate the presence 

of COPD in older patients [151, 152].  The American Thoracic Society (ATS) and the 

European Respiratory Society (ERS) proposed a new threshold, the lower limit of normal 

(LLN) which is adjusted for age related lung functional changes [153]. However, Bhatt et 

al. recently showed that the LLN method underestimated the disease presence in a group 

of elderly patients, in whom there is significantly more emphysema and gas trapping as 

seen on CT, and further showed that there is a high discordance between the two diagnostic 

thresholds [154]. The controversy regarding the appropriate cutoff and what defines 

“normal” in COPD diagnosis is ongoing and a major source of interest. However, the 

simplicity and non-invasive ability made spirometry use the current gold standard in COPD 

diagnosis.  CT has been increasingly being used as an additional tool to quantify the relative 

contribution of emphysema and airway disease in COPD patients which are missing from 

the spirometry measurements. CT-based quantification of low attenuation areas (% LAA) 

in the inspiration and expiration scans provides regional characterization of the COPD 

components. There have been a significant number of studies validating CT-based density 

measures and are pushed towards determining the targeted therapeutic strategies for COPD 
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patients [13, 20, 155]. However, the CT density-based quantification of emphysema and 

airway disease is known to be influenced by scanner miscalibration, image reconstruction 

algorithm, and poor coaching of the patient to the desirable lung volume. While CT density 

measures provides reasonable estimations of regional disease distribution and structural 

changes in lung parenchyma, these measures do not provide any insights on functional 

changes in COPD patients at various stages of disease. As spirometry estimates the lung 

function decline based on a global measure of lung volumes, CT image registration 

techniques can be used to capture the local volume changes in the lung parenchyma under 

disease conditions. 

In our work presented in this thesis, we used image registration as a method by 

which inspiratory and expiratory images were mapped voxel-to-voxel to capture lung 

mechanical changes in COPD patients. The deformation of points from the inspiration 

image to the corresponding biological points in the expiration image can be estimated using 

image registration. In all the studies presented in this thesis, the full inspiration (TLC) and 

end expiration (FRC) CT scans were registered for each subject. A lung mass-preserving 

registration method, sum of squared tissue volume difference (SSTVD), was used as a 

similarity criterion to match the two images. The SSTVD method has been previously 

shown to be effective in lung image registration protocols [58, 59]. The deformation or 

transformation matrix from the image registration was used to derive three measures 

capturing the mechanical changes in the lung tissue from inspiration to the expiration. The 

more commonly used CT-based lung mechanical measure in this thesis is the mean of the 

Jacobian determinant, representing local volume change between inspiration and expiration 

images, as shown in Figure 6.1. The Jacobian deformation map ranges from 0 to infinity 
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where the value greater than 1 indicates local expansion and the values less than 1 indicates 

local contraction. The value equal to one represents neither expansion nor contraction. The 

other CT-based lung mechanical measures are derived based on strain analysis and 

orientation preference of the deformation. While strain components of lung deformation 

field represents the geometrical deformation caused by the action of stress in the lung, 

anisotropic deformation index (ADI) captures information on preferential directionalities 

involved in the volume change. Amelon et al. showed elevated ADI in the inferior regions 

of the lung and along the fissures representing lobar sliding [66]. The proposed indices: 

Jacobian, strain, and ADI allows for better understanding of the lung deformation under 

disease condition in turn helps us to establish a relationship between structural and 

functional changes in COPD patients. In Chapter 2, we hypothesized that the regional 

tissue mechanics from the image registration will provide valuable information on lung 

functional changes in COPD subjects and help identify COPD presence and severity. We 

also tested the role of commonly used CT density and texture measures in addition to the 

lung mechanical measures. We proposed three new measures of lung mechanics for COPD 

identification: Jacobian, strain, and anisotropic deformation index (ADI). We have used a 

supervised machine learning framework to evaluate the performance of CT-based lung 

mechanics, density, and texture measures individually and combined in classifying COPD 

patients. We performed two classification experiments: COPD versus non-COPD and 

COPD severity classification. In the first experiment, COPD versus non-COPD 

classification, the lung mechanical measures showed similar performance in comparison 

with the density measures. The texture feature set which comprised of global texture 

measures based on Gaussian filter bank as proposed in [44, 50], performed reasonably 
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better than the density and mechanical feature sets. In the second experiment, a five-class 

COPD severity classification, the mechanical features derived from the CT image 

registration performed significantly better than the density and texture measures. A stage-

by-stage classification performance was also reported, showing the superior performance 

of the mechanical measures at the later stages of the diseases. This suggests the possibility 

of major lung functional changes at later stages that are being captured by the lung 

mechanical measures. We also combined density, texture, and mechanical measures and 

repeated the same experiments. While the combined feature subset performed no different 

than the individual subsets in COPD versus non-COPD classification, there is a significant 

improvement in COPD severity classification when mechanical measures were added to 

the current state of the art density and texture measures. This study demonstrates the 

effectiveness of CT derived lung mechanics in estimating functional changes in COPD 

patients at different stages of the disease. However, this evaluation is solely based on 

GOLD severity classification of COPD patients, which relies on spirometry diagnosis. 

Although, GOLD severity classification has gone through several iterations [12, 94], we 

have used an up-to-date severity categorization available. Another limitation of our study 

is the number of features used in the classification study, there were several other density 

and texture based measures which have been proven to be effective in COPD quantification 

[35-37, 40, 42-45, 48, 50]. We believe that a complete feature set related to both 

emphysema and airway disease components in COPD may help better phenotype the 

population.  
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Figure 6.1. Explanation of the Jacobian measure 

 

We demonstrated that the use of CT derived mechanical measures in addition to the 

density and texture measures, significantly improves the ability to classify COPD patients 

according to their severity. In chapter 3, we determined whether the CT derived lung 

mechanical measures are associated with patient outcomes in COPD to establish the role 

of mechanics further in clinical settings. In this study, we have used the mean of the 

Jacobian determinant as the sole measure of mechanics and used a statistical analyses to 

determine its association with various patient outcomes in COPD diagnosis. We 

hypothesized that the CT derived local tissue expansion and contraction measures would 

provide valuable information on functional changes related to patient outcomes in COPD. 
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The CT derived metrics representing emphysema and airway disease have previously been 

shown to be independently associated with spirometry diagnosis and objective outcomes 

such as dyspnea, quality of life, exercise capacity, the BODE (body mass index, airflow 

obstruction, dyspnea, exercise capacity) index, St. George’s respiratory questionnaire 

(SGRQ), and mortality [81]. We have showed that the CT derived mean Jacobian measure 

offer information that are not only independent and additive, but with effect sizes greater 

than FEV1 for all the patient outcomes. The Jacobian measure is significantly associated 

with SGRQ scores, exercise capacity index, and the BODE index. On multivariable 

regression analyses, the effect size of the Jacobian measures is stronger than the effect sizes 

of CT-based emphysema, gas trapping, and airway wall thickness measurements. In 

addition, when Jacobian measure is included to the traditional CT measures of disease, this 

improves the prediction of the BODE index. The association with the BODE index 

provides valuable information applicable to COPD prognosis. Although, we still do not 

know the reason behind the strong associations of the Jacobian measure with the clinical 

outcomes when compared with other CT-based measures, it is plausible that the Jacobian 

measure representing local tissue elasticity is providing a collective information on the 

emphysema and airway disease related manifestations in COPD. This also could be due to 

dynamic hyperinflation and poor diaphragmatic motion in COPD patients which might be 

reflected better by the Jacobian measures than the traditional CT measures of emphysema 

and airway disease. Our findings in this study are adjusted for age, gender, ethnicity, BMI, 

number of smoking years, and CT scanning protocol. The better prediction of respiratory 

quality of life, the BODE index, and the mortality by the Jacobian measure shows the 
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importance of regional tissue expansion and parenchymal stress-related functional changes 

in COPD patients.  

The diagnosis of COPD is largely based on the detection of airflow obstruction by 

spirometry. However, it is increasingly clear that the spirometry based diagnosis does not 

fully explain the morbidity associated with the disease [12]. CT-based measures of 

emphysema and airway disease relies on fixed density threshold (-956HU or -856HU) to 

estimate the extent of the disease. However, it is our observation that many COPD patients 

have marked discordance between spirometry diagnosis and CT-based diagnosis. Some 

subjects with severe airflow obstruction on spirometry have mild emphysema on CT and 

conversely, patients with severe emphysema on CT has relatively mild spirometric airflow 

obstruction. While these differences in diagnosis might be contributed from extent of 

airway narrowing, the discordance between spirometry and CT diagnosis have not been 

systematically studied. In Chapter 4, we used such discordant dataset and CT derived lung 

mechanics to improve agreement between spirometry and CT-based diagnosis. We 

hypothesized that the lung mechanical measures will provide a link between CT-based 

diagnosis and spirometry diagnosis of COPD. We have created three subsets of patients: 

spirometry predominant, CT predominant, and matched diagnosis. We have shown that the 

CT-derived lung mechanical measures improved the concordance between traditional CT 

and spirometry diagnosis. The discordance in emphysema extent and spirometry is likely 

due to the fact that the CT measures are mostly static measures from a single volume, 

whereas spirometry related airflow obstruction measures are mostly dynamic. The 

improved agreement by using CT image registration-based lung mechanics might be due 

to the mechanical measures ability to capture the functional changes between volumes. 



www.manaraa.com

108  
 

Especially, the Jacobian measure is reflective of the over-all volume change. We also 

showed the heterogeneity of Jacobian measure (as calculated by coefficient of variation) 

are more strongly associated with CT predominant group, showing the inability of 

spirometry to represent the changes related to disease heterogeneity. As CT measures are 

increasingly being used for assessment of structural lung disease for interventions such as 

bronchoscopic lung volume reduction, patient selection might be better performed by the 

inclusion of regional measures of lung mechanics to the current traditional CT measures. 

All the analyses performed in this study were adjusted for age, gender, race, BMI, number 

of smoking years, and CT scanning protocol. The major limitation of the study is not having 

a measure that clearly represents the airway disease in COPD patients. It is possible that 

the group with mild emphysema on CT and severe airflow obstruction on spirometry 

diagnosis is due to the extent of airway disease in these subjects. Although it is not an 

accurate representation, we did adjust for airway disease using CT-based airway wall area 

thickness (WA %) and gas trapping measures.  

We established the importance of lung mechanics derived from the CT image 

registration methods in COPD diagnosis and phenotyping in Chapters 2, 3, and 4. In 

chapter 5, we tackle a much challenging and most important problem in the current COPD 

research, which is predicting disease progression in COPD patients. We examined the role 

of lung mechanics in identifying patients who progress relatively faster than the others. The 

traditional analyses of CT related measures of COPD heavily revolves around in labeling 

regions in the lung that are either emphysema or airway disease. The prediction of disease 

progression in COPD patients based on CT-based measures has been done previously [67, 

156-159]. However, while there is much discussion on the extent of diseased tissue in the 
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lung, there is limited focus on what makes the normal lung tissue turn into disease tissue 

over a period of time. In this study, we hypothesized that the mechanical properties of the 

normal lung tissue at baseline provides valuable information on regions that are prone to 

convert from normal to diseased over a period of time. To our knowledge, the use of normal 

lung tissue mechanics in predicting COPD progression is novel to the field. In this study, 

we have shown that the normal lung tissue as labelled by traditional methods, are in fact 

exhibits poor mechanical properties with the increase in disease severity. The mean of the 

Jacobian determinant measure representing the local tissue expansion, specifically in the 

normal regions of the lung is significantly associated with both FEV1 and FEV1 change in 

the patients after a 5-year follow up. We also tested the concept of spatial relationship 

between diseased and normal lung regions in COPD patients. We hypothesized that the 

“normal looking” regions closer to either emphysema or airway disease regions will show 

poor mechanical properties than the farther regions, thus providing valuable information of 

regions that are prone to disease progression. We evaluated the mechanical properties of 

the normal lung tissue up to 5 mm from the diseased regions and found the regions that are 

closer to the diseased regions alone can contribute to change in FEV1. The reason behind 

the strong associations between normal voxel mechanics that are closer to disease regions 

with FEV1 change can be explained in relation to the studies done by Suki et al evaluating 

the structural damage of the nearby tissue in the presence of emphysema [142, 143, 148, 

149]. It has been proposed that mechanical failure of the alveolar walls plays a vital role in 

emphysema progression and subsequent structural damage [160, 161], Suki et al. was the 

first to quantify the mechanical stress related changes in the lung parenchymal strips taken 

from emphysematous lungs [145]. The authors showed that the emphysematous lung tissue 
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breaks at 40% smaller stress than the normal lung tissue. The authors also identified greater 

dynamic nonlinearities in the tissue responsible for elastic recoil in the emphysematous 

lungs suggesting a significant collagen remodeling with in the alveolar wall hence 

overstretching the alveoli beyond its capability. In another study performed by the same 

group, a model representing emphysematous lung tissue comprised of linear elastic spring 

network was used to evaluate the damage to the nearby lung tissue in the process of 

emphysema progression. The authors showed that mechanical forces led to a varied tissue 

destruction pattern and emphysema cluster formations. To our knowledge, the use of CT 

image registration techniques to mimic and quantify the “normal” tissue destruction in 

relation to the nearby emphysematous tissue is first in the field. The conventional labeling 

of normal and diseased tissue based on CT density thresholds might not depict an accurate 

picture of underlying pathophysiology of COPD. The use of lung mechanical measures to 

the current mix of CT-based measures is more relevant now in accurately phenotyping 

COPD population.  

It is known that in patients with emphysema, the tissue destruction results in 

reduced elastic recoil in turn increasing the total lung capacity (TLC), the volume at which 

CT images were acquired and useful in quantifying emphysema regions in the lung [162]. 

The distribution of Hounsfield Units (HU) were influenced by the both tissue destruction 

and hyperinflation at TLC. Madani et al. showed that the lung volume at the time of 

scanning has a significant effect on the CT density-based measures of emphysema and 

showed an underestimation of emphysema extent on TLC image by density thresholds 

[162]. Soejima et al. showed that the percentage of low attenuation areas in the lung 

increased with age and Gevenois et al. showed significant correlations of CT density 
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measures with age [163, 164]. The biomechanical measures proposed in this study are 

based on the regional deformation of lung parenchyma between end inspiration (TLC) and 

end expiration (FRC) and it is important to establish the variability introduced by factors 

such as lung volumes, breathing effort, CT image acquisition protocols, and age that 

influences CT density values. Du et al. tested the reproducibility of CT derived lung 

mechanical measures using 4D CT images and the influence of patient’s respiratory effort 

on these measures [165-167]. The standardization of CT image acquisition protocol and 

minimal variations in patient’s breathing effort is vital for reproducibility of any CT-based 

measures of disease including lung mechanical measures. It is important to establish and 

validate a robust lung mechanical feature set that are more physiologically meaningful and 

tolerant to external variations, specifically in relation to COPD diagnosis and phenotyping. 

There have been significant advancements in COPD research to phenotype airway 

predominant disease and emphysema predominant patients using CT images. Galban et al. 

proposed the parametric response mapping (PRM) method as an imaging biomarker that 

can differentiate airway disease from emphysema [67]. The PRM-based labeling of 

functional small airway disease (fSAD) and emphysema depends on the matching or 

registration of the inspiration image to the expiration image. This technique led to 

interesting developments in using CT images to phenotype lung tissue in COPD patients. 

It has been shown to be significantly associated with FEV1 change in a study conducted on 

2000 subjects after a 5-year follow up [71]. However, the major drawback of PRM is its 

reliance on traditional density thresholds (-950HU for emphysema and -856HU for airway 

disease), which has been shown to be influenced by patient’s lung volume and CT 

reconstruction algorithm [80, 162, 168-170].  Boes et al. recently evaluated the impact of 
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sources of variability on PRM measurements and showed significant effects due to 

inadequate lung volumes during image acquisitions [171]. Similar factors affecting the CT 

density-based measurements of emphysema and airway disease will be applicable to PRM-

based analysis, as PRM is dependent on the commonly used density-based thresholds. In 

the case of longitudinal studies, CT density-based thresholds are also influenced by lack of 

consensus and ongoing updates to the required CT acquisition protocol and reconstruction 

kernels. Apart from these limitations, the PRM method is novel and useful in differentiating 

airway disease tissue from the normal tissue. We believe the study of mechanics in PRM 

labeled normal, emphysema, and functional small airway disease regions would provide 

valuable information on how tissue expansion capability varies across disease components 

in COPD and with progression. The studies related to PRM technique were focused on 

analyzing disease regions, we think the normal lung tissue can be further categorized using 

CT-based mechanics, similar to the study mentioned in Chapter 5. Although, CT derived 

lung mechanics are shown to be effective in this thesis in regards to diagnosing COPD, it 

is still unknown how the mechanical properties of the lung tissue changes can be used to 

detect early progression. The work presented in this thesis is largely based on functional 

measures representing local volume change (mean of the Jacobian determinant); the 

influence of tissue mechanics in the presence of airway disease and emphysema separately 

needs further exploration. The elastic ability of the lung tissue at different severity stages 

of the disease might provide useful information on structural manifestations associated with 

COPD. It has been shown previously that the airflow obstruction identified by spirometry 

varies with the heterogeneity of disease [120, 172, 173]. The size of emphysema clusters 

and location of airway narrowing might play a role in the extent of airflow obstruction in 
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the patient, the study of lung mechanical measures under these circumstances demands 

further research. The identification of phenotypes in COPD requires longitudinal 

characterization of the disease progression. Major studies in COPD research: Evaluation of 

COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE), COPDGene, 

and Subpopulations and intermediate outcome measures in COPD (SPIROMICS) are 

currently gathering longitudinal data which helps further exploration of role of mechanics 

in phenotyping and disease progression. In the recent times, cluster analysis techniques 

have been used to group COPD patients based on radiographic features, demographics, and 

patient’s health status [174-177]. The dimensionality of feature space in COPD research is 

ever increasing with the advances in imaging capabilities. These advancements are worthy 

of establishing robust computer aided diagnostic frameworks and reducing the high 

dimensional feature space. There is a great interest in using machine learning frameworks 

either supervised or unsupervised to create a robust feature space which is more relevant 

to COPD phenotyping and progression. The research related to CT texture-based 

quantification of COPD relies on such machine learning framework [38, 40-45]. 

Supervised learning usually requires a training set with annotated data from the clinicians 

and those are further used in training a machine to automatically classify new data. In 

chapter 1, we used a supervised machine learning classifier trained on CT-derived lung 

mechanical measures to confirm the presence and severity of COPD. While such 

supervised learning frameworks showed promise in COPD research, but are constrained by 

relatively constrained sample size affecting the reproducibility and clinical use of such 

techniques [178]. It is also important to mention to the effort and burden to gather huge 

database of manually labelled data as required for better results. There has been 
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considerable interest to use unsupervised learning, especially cluster analysis and deep 

learning techniques in COPD research [82, 178-180]. However, unsupervised learning 

frameworks require a large amount of training data to derive any relevant features, those 

representing underlying patterns in the data. It would be interesting to explore the CT-

derived biomechanical feature maps using such unsupervised learning framework to extract 

underlying functional patterns of disease progression.  

In conclusion, the work presented in this thesis introduced the use of CT image 

registration-based lung mechanical measures in identifying COPD presence, severity, and 

in predicting disease progression. We have shown the effectiveness of lung mechanical 

measures in capturing functional changes and demonstrated how these measures are highly 

relevant to the current state of the art research in COPD. The clinical applicability of the 

CT derived lung mechanics in COPD diagnosis demands discussion and worthy of further 

exploration.  
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APPENDIX 

A.1. CT-based Lung Mechanics in COPD Phenotyping 

Chronic obstructive pulmonary disease (COPD) is characterized by irreversible 

airflow limitation with progressive decline in lung function. COPD is a highly 

heterogeneous disease with multiple underlying phenotypes including emphysema and 

airway disease. Emphysema is characterized by parenchymal destruction and loss of 

elasticity. Airway disease results in airway wall remodeling and narrowing. Spirometry is 

used to diagnose COPD and evaluate severity on a global level. However, spirometry does 

not provide phenotypes or regional characteristics of the disease. Recently, pulmonary CT 

imaging has been used to characterize the heterogeneous nature of COPD by defining CT 

density-based measures of disease. This allows us to differentiate the COPD population 

into emphysema and airway predominant groups. Furthermore, we have used image 

registration to derive lung mechanical measures for regional lung function estimation. We 

have used these regional lung function measurements to estimate COPD severity.  

The morphological manifestations of COPD patients as seen on CT images vary 

widely and not entirely in accordance with the spirometry diagnosis. This heterogeneous 

nature of COPD has led to several studies in understanding individual phenotypes in 

COPD. Phenotyping COPD population based on CT-based airway and emphysema 

measures has been shown previously. In this study, we investigate the differences in lung 

mechanics among the COPD phenotypes. We used a dataset of 415 subjects from the 

COPDGene trial. First, we divided the subjects into different phenotype groups: normal 

(NOR), airway disease predominant (AD), emphysema predominant (ED), and mixed 

phenotypes (MIX). To assign each subject to a phenotype group, we used CT-based 
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measures of airway wall percent (%AW) and emphysema percent (%EMPH). The mean 

%AW and mean %EMPH of asymptomatic smokers were used as thresholds, T1 (64%) 

and T2 (9%), respectively, to define the phenotype groups. The groups were defined as 

follows: NOR: %AW< T1 and %EMPH < T2; AD: %AW> T1 and %EMPH < T2; ED: 

%AW < T1 and %EMPH > T2; MIX: %AW > T1 and %EMPH > T2. Image registration 

was used to obtain a pixel wise transformation between inspiration and expiration images. 

The mean and standard deviation of the Jacobian of the transformation is used to estimate 

tissue expansion and heterogeneity of tissue expansion. Tukey’s significance test is used to 

compare the local tissue expansion between groups. Table A1.1 shows the CT-based 

measures for each phenotype. We have shown that lung mechanical measures derived from 

CT image registration are significantly different between normal, emphysema, and airway 

predominant groups. The mean Jacobian and heterogeneity of local tissue expansion as 

represented by the standard deviation of Jacobian measure is significantly different 

between emphysema and airway predominant groups. This might be due to the loss of 

elasticity in emphysema regions of the lung. The mixed phenotype showed similar lung 

mechanics as airway predominant group. The tissue heterogeneity of normal patients is 

significantly different from the other three phenotypes. 

 

 

 

 

Table A1.1. CT measures by phenotype. NOR: normal, AD: airway disease predominant, 

ED: emphysema predominant, MIXED: mixed phenotype. All values reported as mean 



www.manaraa.com

117  
 

(standard deviation). Symbols *, ̂ , and º represent significant difference compared to NOR, 

AD, and ED respectively (Tukey significance test with P value < 0.05) 

Parameters NOR AD ED MIXED 

CT Emphysema 1.7 (1.6) 1.6 (1.3) 22.4 (12.9)*^ 27.9 (10.9)*^º 

CT Air Trapping 15.3 (12.1) 22.0 (12.5)* 44.1 (18.9)*^ 60.4 (13.5)*^º 

Airway Wall Area 60.5 (2.3) 66.9 (1.9)* 59.8 (2.3)*^ 65.8 (1.1)*º 

Jacobian Mean 1.6 (0.2) 1.3 (0.1)* 1.6 (0.2)^ 1.3 (0.1)*º 

Jacobian Std. Dev 0.5 (0.2) 0.3 (0.1)* 0.6 (0.3)*^ 0.3 (0.1)*º 
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Figure A1.1. Phenotype division based on CT emphysema (%) on y-axis and airway wall 

area percent (WA %) on x-axis. Red line represents mean±2sd of CT emphysema (%) 

whereas yellow line represents mean±2sd of WA % in asymptomatic smokers.  

A.2. CT-based Lung Mechanics in SPIROMICS 

Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS) is a 

multicenter study designed to determine intermediate outcomes and endpoints in the 

population with COPD in order for better phenotyping of the patient populations. The study 

includes current and former smokers (> 20 pack years) with and without COPD and non-

smokers without COPD aged 40-80 years. SPIROMICS participants provided demographic 

information, smoking history, and other related clinical outcomes. CT images were 

acquired at full inspiration (TLC) and residual volume (RV). Previously, in COPDGene 

study, CT scans were acquired at full inspiration (TLC) and functional residual capacity 

(FRC). We estimated CT image registration-based regional lung mechanics from 

SPIROMICS and evaluated the mechanistic differences across GOLD stages.  
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Figure A2.1. Mean of the Jacobian determinant across GOLD stages representing local 

volume change in SPIROMICS subjects (n=750) 

 

Table A2.1. Pairwise comparison of mean of Jacobian determinant between COPD severity 

stages. Results are based on Tukey honest significant difference (HSD) test post ANOVA 

analysis. 

1. Severity Stage Comparison 2. P value 

3. GOLD 0 – GOLD 1 4. 0.305 

5. GOLD 1 – GOLD 2 6. < 0.001 

7. GOLD 2 – GOLD 3 8. < 0.001 

9. GOLD 3 – GOLD 4 10. 0.535 
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Figure A2.2. Heterogeneity of local tissue expansion across GOLD stages in SPIROMICS 

(n=750). 

 

Table A2.2. Pairwise comparison of heterogeneity of local tissue expansion (Standard 

deviation of Jacobian determinant) between COPD severity stages. Results are based on 

Tukey honest significant difference (HSD) test post ANOVA analysis. 

11. Severity Stage Comparison 12. P value 

13. GOLD 0 – GOLD 1 14. 0.065 

15. GOLD 1 – GOLD 2 16. < 0.001 

17. GOLD 2 – GOLD 3 18. < 0.001 

19. GOLD 3 – GOLD 4 20. 0.867 
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Figure A2.3. Mean of the principle strain across GOLD stages in SPIROMICS subjects 

(n=750). 

 

Table A2.3. Pairwise comparison of mean principle strain between COPD severity stages. 

Results are based on Tukey honest significant difference (HSD) test post ANOVA analysis. 

21. Severity Stage Comparison 22. P value 

23. GOLD 0 – GOLD 1 24. 0.012 

25. GOLD 1 – GOLD 2 26. < 0.001 

27. GOLD 2 – GOLD 3 28. < 0.001 

29. GOLD 3 – GOLD 4 30. 0.612 
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Figure A2.4. Heterogeneity of the principle strain (standard deviation of the strain map) 

across GOLD stages in SPIROMICS subjects (n=750). 

 

Table A2.4. Pairwise comparison of mean principle strain between COPD severity stages. 

Results are based on Tukey honest significant difference (HSD) test post ANOVA analysis. 

31. Severity Stage Comparison 32. P value 

33. GOLD 0 – GOLD 1 34. 0.462 

35. GOLD 1 – GOLD 2 36. < 0.001 

37. GOLD 2 – GOLD 3 38. < 0.001 

39. GOLD 3 – GOLD 4 40. 0.962 

 

  



www.manaraa.com

123  
 

REFERENCES 

1. Breatnach, E., G.C. Abbott, and R.G. Fraser, Dimensions of the normal human 

trachea. AJR Am J Roentgenol, 1984. 142(5): p. 903-6. 

2. Farkas, A., I. Balashazy, and K. Szocs, Characterization of regional and local 

deposition of inhaled aerosol drugs in the respiratory system by computational fluid and 

particle dynamics methods. J Aerosol Med, 2006. 19(3): p. 329-43. 

3. Tu, J., Computational Fluid and Particle Dynamics in the Human Respiratory 

System. 2013: Springer. 

4. Kitaoka, H., P.H. Burri, and E.R. Weibel, Development of the human fetal airway 

tree: analysis of the numerical density of airway endtips. Anat Rec, 1996. 244(2): p. 207-

13. 

5. Rodriguez, M., et al., Pulmonary acinus: geometry and morphometry of the 

peripheral airway system in rat and rabbit. Am J Anat, 1987. 180(2): p. 143-55. 

6. AnaesthesiaUK. Tests of Pulmonary Function. 2004; Available from: 

http://www.frca.co.uk/article.aspx?articleid=100023. 

7. Seaman, J., A.C. Leonard, and R.J. Panos, Health care utilization history, GOLD 

guidelines, and respiratory medication prescriptions in patients with COPD. Int J Chron 

Obstruct Pulmon Dis, 2010. 5: p. 89-97. 

8. Rabe, K.F., et al., Global strategy for the diagnosis, management, and prevention 

of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit 

Care Med, 2007. 176(6): p. 532-55. 

http://www.frca.co.uk/article.aspx?articleid=100023


www.manaraa.com

124  
 

9. Dal Negro, R.W., L. Bonadiman, and P. Turco, Prevalence of different 

comorbidities in COPD patients by gender and GOLD stage. Multidiscip Respir Med, 

2015. 10(1): p. 24. 

10. COPD, L.W.w. What is COPD. Available from: 

http://www.livingwellwithcopd.com/en/what-is-copd.html. 

11. Fabbri, L., et al., Global Strategy for the Diagnosis, Management, and Prevention 

of Chronic Obstructive Pulmonary Disease: GOLD Executive Summary updated 2003. 

COPD, 2004. 1(1): p. 105-41; discussion 103-4. 

12. Wilke S, S.D., Spruit MA, et al. , The 2014 updated GOLD strategy: A 

comparison of the various scenarios. J COPD F, 2014. 

13. Newell, J.D., Jr., J.C. Hogg, and G.L. Snider, Report of a workshop: quantitative 

computed tomography scanning in longitudinal studies of emphysema. Eur Respir J, 

2004. 23(5): p. 769-75. 

14. Greene, R., Fleischner Lecture. Imaging the respiratory system in the first few 

years after discovery of the X-ray: contributions of Francis H. Williams, M.D. AJR Am J 

Roentgenol, 1992. 159(1): p. 1-7. 

15. Hounsfield, G.N., Computerized transverse axial scanning (tomography): Part I. 

Description of system. 1973. Br J Radiol, 1995. 68(815): p. H166-72. 

16. Ritenour, W.R.H.a.E.R., Medical Imaging Physics. 2002: WILEY. 

17. Key, R. Computed Tomography. Available from: 

http://radiologykey.com/computed-tomography-4/. 

18. Bafadhel, M., et al., The role of CT scanning in multidimensional phenotyping of 

COPD. Chest, 2011. 140(3): p. 634-42. 

http://www.livingwellwithcopd.com/en/what-is-copd.html
http://radiologykey.com/computed-tomography-4/


www.manaraa.com

125  
 

19. Coxson, H.O. and P.D. Pare, Phenotyping COPD using high resolution CT. Is it 

time to leave it for Watson? COPD, 2012. 9(2): p. 87-9. 

20. Mishima, M., [CT imaging of COPD--importance of phenotyping (emphysema 

dominant and airway disorder dominant)]. Nihon Rinsho, 2007. 65(4): p. 648-54. 

21.  Introduction to CT Physics. 2007; Available from: 

http://www.odec.ca/projects/2007/kimj7j2/index_files/Page1674.htm. 

22. The definition of emphysema. Report of a National Heart, Lung, and Blood 

Institute, Division of Lung Diseases workshop. Am Rev Respir Dis, 1985. 132(1): p. 182-

5. 

23. Hayhurst, M.D., et al., Diagnosis of pulmonary emphysema by computerised 

tomography. Lancet, 1984. 2(8398): p. 320-2. 

24. Muller, N.L., et al., "Density mask". An objective method to quantitate 

emphysema using computed tomography. Chest, 1988. 94(4): p. 782-7. 

25. Coxson, H.O. and R.M. Rogers, Quantitative computed tomography of chronic 

obstructive pulmonary disease. Acad Radiol, 2005. 12(11): p. 1457-63. 

26. Gevenois, P.A., et al., Comparison of computed density and microscopic 

morphometry in pulmonary emphysema. Am J Respir Crit Care Med, 1996. 154(1): p. 

187-92. 

27. Mishima, M., et al., Standardization of low attenuation area versus total lung 

area in chest X-ray CT as an indicator of chronic pulmonary emphysema. Front Med Biol 

Eng, 1997. 8(2): p. 79-86. 

http://www.odec.ca/projects/2007/kimj7j2/index_files/Page1674.htm


www.manaraa.com

126  
 

28. Kauczor, H.U., et al., CT attenuation of paired HRCT scans obtained at full 

inspiratory/expiratory position: comparison with pulmonary function tests. Eur Radiol, 

2002. 12(11): p. 2757-63. 

29. Kubo, K., et al., Expiratory and inspiratory chest computed tomography and 

pulmonary function tests in cigarette smokers. Eur Respir J, 1999. 13(2): p. 252-6. 

30. Lucidarme, O., et al., Expiratory CT scans for chronic airway disease: correlation 

with pulmonary function test results. AJR Am J Roentgenol, 1998. 170(2): p. 301-7. 

31. Knudson, R.J., et al., Expiratory computed tomography for assessment of 

suspected pulmonary emphysema. Chest, 1991. 99(6): p. 1357-66. 

32. Newman, K.B., et al., Quantitative computed tomography detects air trapping due 

to asthma. Chest, 1994. 106(1): p. 105-9. 

33. Matsuoka, S., et al., Quantitative assessment of air trapping in chronic obstructive 

pulmonary disease using inspiratory and expiratory volumetric MDCT. AJR Am J 

Roentgenol, 2008. 190(3): p. 762-9. 

34. Lab, A.P.P.I. CT density-based emphysema and air trapping visualization. 

Available from: https://www.i-clic.uihc.uiowa.edu/pics.html. 

35. Uppaluri, R., et al., Computer recognition of regional lung disease patterns. Am J 

Respir Crit Care Med, 1999. 160(2): p. 648-54. 

36. Uppaluri, R., et al., Interstitial lung disease: A quantitative study using the 

adaptive multiple feature method. Am J Respir Crit Care Med, 1999. 159(2): p. 519-25. 

37. Uppaluri, R., et al., Quantification of pulmonary emphysema from lung computed 

tomography images. Am J Respir Crit Care Med, 1997. 156(1): p. 248-54. 

https://www.i-clic.uihc.uiowa.edu/pics.html


www.manaraa.com

127  
 

38. Xu, Y., et al., MDCT-based 3-D texture classification of emphysema and early 

smoking related lung pathologies. IEEE Trans Med Imaging, 2006. 25(4): p. 464-75. 

39. Madsen, M.T., et al., Pulmonary CT image classification with evolutionary 

programming. Acad Radiol, 1999. 6(12): p. 736-41. 

40. Park, Y.S., et al., Texture-based quantification of pulmonary emphysema on high-

resolution computed tomography: comparison with density-based quantification and 

correlation with pulmonary function test. Invest Radiol, 2008. 43(6): p. 395-402. 

41. Hoffman, E.A., et al., Characterization of the interstitial lung diseases via 

density-based and texture-based analysis of computed tomography images of lung 

structure and function. Acad Radiol, 2003. 10(10): p. 1104-18. 

42. Ginsburg, S.B., et al., Automated texture-based quantification of centrilobular 

nodularity and centrilobular emphysema in chest CT images. Acad Radiol, 2012. 19(10): 

p. 1241-51. 

43. Ojala, T., and Matti Pietikäinen, Unsupervised texture segmentation using feature 

distributions. Pattern Recognition, 1999. 

44. Sorensen, L., et al., Texture-based analysis of COPD: a data-driven approach. 

IEEE Trans Med Imaging, 2012. 31(1): p. 70-8. 

45. Nishio, M., Hisanobu Koyama, Yoshiharu Ohno, and Kazuro Sugimura, 

Classification of Emphysema Subtypes: Comparative Assessment of Local Binary 

Patterns and Related Texture Features. Advances in Computed Tomography, 2015. 4. 

 

 



www.manaraa.com

128  
 

46. Zulueta-Coarasa, T., Sila Kurugol, James C. Ross, George G. Washko, and Raúl 

San José Estépar, Emphysema classification based on embedded probabilistic PCA. 35th 

Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society (EMBC), 2013. 

47. Shin, H.-C., Holger R. Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues, 

Jianhua Yao, Daniel Mollura, and Ronald M. Summers, Deep convolutional neural 

networks for computer-aided detection: CNN architectures, dataset characteristics and 

transfer learning. IEEE transactions on medical imaging, 2016. 

48. Li, Q., Weidong Cai, and David Dagan Feng, Lung image patch classification 

with automatic feature learning. International Conference of the IEEE Engineering in 

Medicine and Biology Society (EMBC), 2013. 

49. Anthimopoulos, M., Stergios Christodoulidis, Lukas Ebner, Andreas Christe, and 

Stavroula Mougiakakou, Lung Pattern Classification for Interstitial Lung Diseases Using 

a Deep Convolutional Neural Network. IEEE transactions on medical imaging, 2016. 

50. Sorensen, L., Pattern Recognition-Based Analysis of COPD in CT, in Faculty of 

Science. 2010, University of Copenhagen. 

51. Regan, E.A., et al., Genetic epidemiology of COPD (COPDGene) study design. 

COPD, 2010. 7(1): p. 32-43. 

52. Vestbo, J., et al., Evaluation of COPD Longitudinally to Identify Predictive 

Surrogate End-points (ECLIPSE). Eur Respir J, 2008. 31(4): p. 869-73. 

53. Sieren, J.P., et al., SPIROMICS Protocol for Multicenter Quantitative CT to 

Phenotype the Lungs. Am J Respir Crit Care Med, 2016. 



www.manaraa.com

129  
 

54. Ibanez, L., Schroeder, W., Ng, L., Cates, J., The ITK Software Guide. 2005: 

Kitware Inc. 

55. Ourselin, S., Alexis Roche, Gérard Subsol, Xavier Pennec, and Nicholas Ayache, 

Reconstructing a 3D structure from serial histological sections,. Image and vision 

computing, 2001. 

56. Han, X., Feature-constrained nonlinear registration of lung CT images., in 

Medical image analysis for the clinic: a grand challenge. 2010. 

57. Gorbunova, V., et al., Weight preserving image registration for monitoring 

disease progression in lung CT. Med Image Comput Comput Assist Interv, 2008. 11(Pt 

2): p. 863-70. 

58. Yin, Y., E.A. Hoffman, and C.L. Lin, Mass preserving nonrigid registration of 

CT lung images using cubic B-spline. Med Phys, 2009. 36(9): p. 4213-22. 

59. Reinhardt, J.M., et al., Registration-derived estimates of local lung expansion as 

surrogates for regional ventilation. Inf Process Med Imaging, 2007. 20: p. 763-74. 

60. Cao, K., Local lung tissue expansion analysis based on inverse consistent image 

registration, in Electrical and Computer Engineering. 2008, University of Iowa. 

61. Reinhardt, J.M., et al., Registration-based estimates of local lung tissue expansion 

compared to xenon CT measures of specific ventilation. Med Image Anal, 2008. 12(6): p. 

752-63. 

62. Christensen, G.E., Rabbitt, R.D., Miller, M.I., Joshi, S., Grenander, U., Coogan, 

T., Essen, D.V. Topological properties of smooth anatomic maps. in Information 

Proceedings in Medical Imaging. 1995. Boston: Kluwer Academic Publishers. 

63. RC, B., Advanced Calculus. 1978, St. Louis: McGraw-Hill Book Company. 



www.manaraa.com

130  
 

64. Lubliner, J., Plasiticity Theory. 2008, Mineola, NY: Dover Publication. 

65. Pellegrino, R., et al., Interpretative strategies for lung function tests. Eur Respir J, 

2005. 26(5): p. 948-68. 

66. Amelon, R., et al., Three-dimensional characterization of regional lung 

deformation. J Biomech, 2011. 44(13): p. 2489-95. 

67. Galban, C.J., et al., Computed tomography-based biomarker provides unique 

signature for diagnosis of COPD phenotypes and disease progression. Nat Med, 2012. 

18(11): p. 1711-5. 

68. Gorbunova, V., et al., Early detection of emphysema progression. Med Image 

Comput Comput Assist Interv, 2010. 13(Pt 2): p. 193-200. 

69. Boes, J.L., et al., Parametric response mapping monitors temporal changes on 

lung CT scans in the subpopulations and intermediate outcome measures in COPD Study 

(SPIROMICS). Acad Radiol, 2015. 22(2): p. 186-94. 

70. Murphy, K., et al., Toward automatic regional analysis of pulmonary function 

using inspiration and expiration thoracic CT. Med Phys, 2012. 39(3): p. 1650-62. 

71. Bhatt, S.P., Xavier Soler, Xin Wang, Susan Murray, Antonio R. Anzueto, Terri H. 

Beaty, Aladin M. Boriek et al., Association between functional small airways disease and 

FEV1 decline in COPD. American Journal of Respiratory and Critical Care Medicine, 

2016. 

72. Choi, S., et al., Registration-based assessment of regional lung function via 

volumetric CT images of normal subjects vs. severe asthmatics. J Appl Physiol (1985), 

2013. 115(5): p. 730-42. 



www.manaraa.com

131  
 

73. Petersen, J., Vladlena Gorbunova, Mads Nielsen, Asger Dirksen, Pechin Lo, and 

Marleen de Bruijne., Longitudinal analysis of airways using registration., in Fourth 

International Workshop on Pulmonary Image Analysis. 2011. 

74. Ederle, J.R., et al., Evaluation of changes in central airway dimensions, lung area 

and mean lung density at paired inspiratory/expiratory high-resolution computed 

tomography. Eur Radiol, 2003. 13(11): p. 2454-61. 

75. Kim, E.Y., et al., Detailed analysis of the density change on chest CT of COPD 

using non-rigid registration of inspiration/expiration CT scans. Eur Radiol, 2015. 25(2): 

p. 541-9. 

76. Matsuoka, S., et al., Quantitative CT measurement of cross-sectional area of 

small pulmonary vessel in COPD: correlations with emphysema and airflow limitation. 

Acad Radiol, 2010. 17(1): p. 93-9. 

77. Nishio, M., et al., Paired inspiratory/expiratory volumetric CT and deformable 

image registration for quantitative and qualitative evaluation of airflow limitation in 

smokers with or without copd. Acad Radiol, 2015. 22(3): p. 330-6. 

78. Lopez-Campos, J.L., W. Tan, and J.B. Soriano, Global burden of COPD. 

Respirology, 2016. 21(1): p. 14-23. 

79. Fromer, L. and C.B. Cooper, A review of the GOLD guidelines for the diagnosis 

and treatment of patients with COPD. Int J Clin Pract, 2008. 62(8): p. 1219-36. 

80. Hochhegger, B., et al., Reconstruction algorithms influence the follow-up 

variability in the longitudinal CT emphysema index measurements. Korean J Radiol, 

2011. 12(2): p. 169-75. 



www.manaraa.com

132  
 

81. Martinez, C.H., Ya-Hong Chen, Phillip M. Westgate, Lyrica X. Liu, Susan 

Murray, Jeffrey L. Curtis, Barry J. Make et al., Relationship between quantitative CT 

metrics and health status and BODE in chronic obstructive pulmonary disease. Thorax, 

2012. 

82. Shin, H.C., et al., Deep Convolutional Neural Networks for Computer-Aided 

Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE 

Trans Med Imaging, 2016. 35(5): p. 1285-98. 

83. Han, M.K., Clinical correlations of computed tomography imaging in chronic 

obstructive pulmonary disease. Ann Am Thorac Soc, 2013. 10 Suppl: p. S131-7. 

84. Schroeder, J.D., et al., Relationships between airflow obstruction and quantitative 

CT measurements of emphysema, air trapping, and airways in subjects with and without 

chronic obstructive pulmonary disease. AJR Am J Roentgenol, 2013. 201(3): p. W460-

70. 

85. Bhatt, S.P., et al., Comparison of spirometric thresholds in diagnosing smoking-

related airflow obstruction. Thorax, 2014. 69(5): p. 409-14. 

86. Grydeland, T.B., et al., Quantitative computed tomography measures of 

emphysema and airway wall thickness are related to respiratory symptoms. Am J Respir 

Crit Care Med, 2010. 181(4): p. 353-9. 

87. Martinez, C.H., et al., Relationship between quantitative CT metrics and health 

status and BODE in chronic obstructive pulmonary disease. Thorax, 2012. 67(5): p. 399-

406. 

88. Gietema, H.A., et al., Impact of emphysema and airway wall thickness on quality 

of life in smoking-related COPD. Respir Med, 2013. 107(8): p. 1201-9. 



www.manaraa.com

133  
 

89. Diaz, A.A., et al., Relationship of emphysema and airway disease assessed by CT 

to exercise capacity in COPD. Respir Med, 2010. 104(8): p. 1145-51. 

90. Spruit, M.A., et al., Determinants of poor 6-min walking distance in patients with 

COPD: the ECLIPSE cohort. Respir Med, 2010. 104(6): p. 849-57. 

91. Johannessen, A., et al., Mortality by level of emphysema and airway wall 

thickness. Am J Respir Crit Care Med, 2013. 187(6): p. 602-8. 

92. Bhatt, S.P., et al., CT-derived Biomechanical Metrics Improve Agreement 

Between Spirometry and Emphysema. Acad Radiol, 2016. 

93. Bodduluri, S., et al., Registration-based lung mechanical analysis of chronic 

obstructive pulmonary disease (COPD) using a supervised machine learning framework. 

Acad Radiol, 2013. 20(5): p. 527-36. 

94. Vestbo, J., et al., Global strategy for the diagnosis, management, and prevention 

of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit 

Care Med, 2013. 187(4): p. 347-65. 

95. Jones, P.W., F.H. Quirk, and C.M. Baveystock, The St George's Respiratory 

Questionnaire. Respir Med, 1991. 85 Suppl B: p. 25-31; discussion 33-7. 

96. Mahler, D.A. and C.K. Wells, Evaluation of clinical methods for rating dyspnea. 

Chest, 1988. 93(3): p. 580-6. 

97. Polkey, M.I., et al., Six-minute-walk test in chronic obstructive pulmonary 

disease: minimal clinically important difference for death or hospitalization. Am J Respir 

Crit Care Med, 2013. 187(4): p. 382-6. 



www.manaraa.com

134  
 

98. Celli, B.R., et al., The body-mass index, airflow obstruction, dyspnea, and 

exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med, 2004. 

350(10): p. 1005-12. 

99. Ding, K., et al., Comparison of image registration based measures of regional 

lung ventilation from dynamic spiral CT with Xe-CT. Med Phys, 2012. 39(8): p. 5084-98. 

100. Westwood, M., et al., Relationship between FEV1 change and patient-reported 

outcomes in randomised trials of inhaled bronchodilators for stable COPD: a systematic 

review. Respir Res, 2011. 12: p. 40. 

101. Oga, T., et al., Longitudinal deteriorations in patient reported outcomes in 

patients with COPD. Respir Med, 2007. 101(1): p. 146-53. 

102. Castaldi, P.J., et al., Distinct quantitative computed tomography emphysema 

patterns are associated with physiology and function in smokers. Am J Respir Crit Care 

Med, 2013. 188(9): p. 1083-90. 

103. Kim, W.D., et al., Centrilobular and panlobular emphysema in smokers. Two 

distinct morphologic and functional entities. Am Rev Respir Dis, 1991. 144(6): p. 1385-

90. 

104. Saetta, M., et al., Extent of centrilobular and panacinar emphysema in smokers' 

lungs: pathological and mechanical implications. Eur Respir J, 1994. 7(4): p. 664-71. 

105. Sverzellati, N., et al., Physiologic and Quantitative Computed Tomography 

Differences between Centrilobular and Panlobular Emphysema in Copd. Chronic Obstr 

Pulm Dis (Miami), 2014. 1(1): p. 125-132. 

106. Haruna, A., et al., CT scan findings of emphysema predict mortality in COPD. 

Chest, 2010. 138(3): p. 635-40. 



www.manaraa.com

135  
 

107. Fishman, A., et al., A randomized trial comparing lung-volume-reduction surgery 

with medical therapy for severe emphysema. N Engl J Med, 2003. 348(21): p. 2059-73. 

108. Scharf, S.M., et al., Changes in pulmonary mechanics after lung volume reduction 

surgery. Lung, 1998. 176(3): p. 191-204. 

109. Fuld, M.K., et al., Systems for lung volume standardization during static and 

dynamic MDCT-based quantitative assessment of pulmonary structure and function. 

Acad Radiol, 2012. 19(8): p. 930-40. 

110. Iyer, K.S., et al., Repeatability and Sample Size Assessment Associated with 

Computed Tomography-Based Lung Density Metrics. Chronic Obstr Pulm Dis (Miami), 

2014. 1(1): p. 97-104. 

111. Jahani, N., et al., Assessment of regional non-linear tissue deformation and air 

volume change of human lungs via image registration. J Biomech, 2014. 47(7): p. 1626-

33. 

112. Coxson, H.O., et al., Using pulmonary imaging to move chronic obstructive 

pulmonary disease beyond FEV1. Am J Respir Crit Care Med, 2014. 190(2): p. 135-44. 

113. Madani, A., et al., Pulmonary emphysema: objective quantification at multi-

detector row CT--comparison with macroscopic and microscopic morphometry. 

Radiology, 2006. 238(3): p. 1036-43. 

114. Heremans, A., et al., Measurement of lung density by means of quantitative CT 

scanning. A study of correlations with pulmonary function tests. Chest, 1992. 102(3): p. 

805-11. 



www.manaraa.com

136  
 

115. Hesselbacher, S.E., et al., Cross-sectional analysis of the utility of pulmonary 

function tests in predicting emphysema in ever-smokers. International journal of 

environmental research and public health, 2011. 8(5): p. 1324-40. 

116. Kinsella, M., et al., Quantitation of emphysema by computed tomography using a 

"density mask" program and correlation with pulmonary function tests. Chest, 1990. 

97(2): p. 315-21. 

117. Haraguchi, M., et al., Pulmonary function and regional distribution of emphysema 

as determined by high-resolution computed tomography. Respiration; international 

review of thoracic diseases, 1998. 65(2): p. 125-9. 

118. Gould, G.A., et al., Lung CT density correlates with measurements of airflow 

limitation and the diffusing capacity. The European respiratory journal : official journal 

of the European Society for Clinical Respiratory Physiology, 1991. 4(2): p. 141-6. 

119. Washko, G.R., et al., Computed tomographic-based quantification of emphysema 

and correlation to pulmonary function and mechanics. COPD, 2008. 5(3): p. 177-86. 

120. Aziz, Z.A., et al., Functional impairment in emphysema: contribution of airway 

abnormalities and distribution of parenchymal disease. AJR Am J Roentgenol, 2005. 

185(6): p. 1509-15. 

121. Pauls, S., et al., Assessment of COPD severity by computed tomography: 

correlation with lung functional testing. Clinical imaging, 2010. 34(3): p. 172-8. 

122. Spaggiari, E., et al., Early smoking-induced lung lesions in asymptomatic subjects. 

Correlations between high resolution dynamic CT and pulmonary function testing. La 

Radiologia medica, 2005. 109(1-2): p. 27-39. 



www.manaraa.com

137  
 

123. Lutchmedial, S.M., et al., How Common is Airflow Limitation in Patients with 

Emphysema on Computerized Tomography of the Chest? Chest, 2014. 

124. Miller, M.R., et al., Standardisation of spirometry. Eur Respir J, 2005. 26(2): p. 

319-38. 

125. Hankinson, J.L., J.R. Odencrantz, and K.B. Fedan, Spirometric reference values 

from a sample of the general U.S. population. American journal of respiratory and critical 

care medicine, 1999. 159(1): p. 179-87. 

126. Zach, J.A., et al., Quantitative computed tomography of the lungs and airways in 

healthy nonsmoking adults. Invest Radiol, 2012. 47(10): p. 596-602. 

127. Busacker, A., et al., A multivariate analysis of risk factors for the air-trapping 

asthmatic phenotype as measured by quantitative CT analysis. Chest, 2009. 135(1): p. 48-

56. 

128. Nakano, Y., et al., Comparison of low attenuation areas on computed 

tomographic scans between inner and outer segments of the lung in patients with chronic 

obstructive pulmonary disease: incidence and contribution to lung function. Thorax, 

1999. 54(5): p. 384-9. 

129. Gurney, J.W., et al., Regional distribution of emphysema: correlation of high-

resolution CT with pulmonary function tests in unselected smokers. Radiology, 1992. 

183(2): p. 457-63. 

130. Saitoh, T., et al., Lobar distribution of emphysema in computed tomographic 

densitometric analysis. Investigative radiology, 2000. 35(4): p. 235-43. 



www.manaraa.com

138  
 

131. Parr, D.G., et al., Pattern of emphysema distribution in alpha1-antitrypsin 

deficiency influences lung function impairment. American journal of respiratory and 

critical care medicine, 2004. 170(11): p. 1172-8. 

132. Bhatt, S.P., et al., Disproportionate contribution of right middle lobe to 

emphysema and gas trapping on computed tomography. PLoS One, 2014. 9(7): p. 

e102807. 

133. Ju, J., et al., Impact of emphysema heterogeneity on pulmonary function. PLoS 

One, 2014. 9(11): p. e113320. 

134. Enright, P., HRCT-defined emphysema is not COPD to be treated with inhalers. 

Thorax, 2014. 69(5): p. 401-2. 

135. Smith, B.M., et al., Comparison of spatially matched airways reveals thinner 

airway walls in COPD. The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study 

and the Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS). 

Thorax, 2014. 69(11): p. 987-96. 

136. Sieren, J.P., et al., Sinogram Affirmed Iterative Reconstruction (SAFIRE) versus 

weighted filtered back projection (WFBP) effects on quantitative measure in the 

COPDGene 2 test object. Med Phys, 2014. 41(9): p. 091910. 

137. Newell, J.D., Jr., et al., Very low-dose (0.15 mGy) chest CT protocols using the 

COPDGene 2 test object and a third-generation dual-source CT scanner with 

corresponding third-generation iterative reconstruction software. Invest Radiol, 2015. 

50(1): p. 40-5. 



www.manaraa.com

139  
 

138. Nishimura, M., et al., Annual change in pulmonary function and clinical 

phenotype in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2012. 

185(1): p. 44-52. 

139. Duvoix, A., et al., Blood fibrinogen as a biomarker of chronic obstructive 

pulmonary disease. Thorax, 2013. 68(7): p. 670-6. 

140. Vestbo, J., et al., Changes in forced expiratory volume in 1 second over time in 

COPD. N Engl J Med, 2011. 365(13): p. 1184-92. 

141. McDonough, J.E., et al., Small-airway obstruction and emphysema in chronic 

obstructive pulmonary disease. N Engl J Med, 2011. 365(17): p. 1567-75. 

142. Suki, B., et al., Biomechanics of the lung parenchyma: critical roles of collagen 

and mechanical forces. J Appl Physiol (1985), 2005. 98(5): p. 1892-9. 

143. Suki, B., et al., Mechanical failure, stress redistribution, elastase activity and 

binding site availability on elastin during the progression of emphysema. Pulm 

Pharmacol Ther, 2012. 25(4): p. 268-75. 

144. Ritter, M.C., et al., A zipper network model of the failure mechanics of 

extracellular matrices. Proc Natl Acad Sci U S A, 2009. 106(4): p. 1081-6. 

145. Ito, S., et al., Mechanics, nonlinearity, and failure strength of lung tissue in a 

mouse model of emphysema: possible role of collagen remodeling. J Appl Physiol (1985), 

2005. 98(2): p. 503-11. 

146. Maksym, G.N. and J.H. Bates, A distributed nonlinear model of lung tissue 

elasticity. J Appl Physiol (1985), 1997. 82(1): p. 32-41. 



www.manaraa.com

140  
 

147. Kononov, S., et al., Roles of mechanical forces and collagen failure in the 

development of elastase-induced emphysema. Am J Respir Crit Care Med, 2001. 164(10 

Pt 1): p. 1920-6. 

148. Suki, B., et al., Emphysema and mechanical stress-induced lung remodeling. 

Physiology (Bethesda), 2013. 28(6): p. 404-13. 

149. Suki, B., K.R. Lutchen, and E.P. Ingenito, On the progressive nature of 

emphysema: roles of proteases, inflammation, and mechanical forces. Am J Respir Crit 

Care Med, 2003. 168(5): p. 516-21. 

150. Eisner, M.D., et al., An official American Thoracic Society public policy 

statement: Novel risk factors and the global burden of chronic obstructive pulmonary 

disease. Am J Respir Crit Care Med, 2010. 182(5): p. 693-718. 

151. Price, D.B., B.P. Yawn, and R.C. Jones, Improving the differential diagnosis of 

chronic obstructive pulmonary disease in primary care. Mayo Clin Proc, 2010. 85(12): p. 

1122-9. 

152. Mannino, D.M., A. Sonia Buist, and W.M. Vollmer, Chronic obstructive 

pulmonary disease in the older adult: what defines abnormal lung function? Thorax, 

2007. 62(3): p. 237-41. 

153. Brusasco, V. and R. Pellegrino, Spirometry in Chronic Obstructive Pulmonary 

Disease. From Rule of Thumb to Science. Am J Respir Crit Care Med, 2016. 193(7): p. 

704-6. 

154. Bhatt, S.P., et al., Comparison of spirometric thresholds in diagnosing smoking-

related airflow obstruction: authors' response. Thorax, 2014. 69(12): p. 1147-8. 



www.manaraa.com

141  
 

155. Nishimura, K., et al., Comparison of different computed tomography scanning 

methods for quantifying emphysema. J Thorac Imaging, 1998. 13(3): p. 193-8. 

156. Welte, T., C. Vogelmeier, and A. Papi, COPD: early diagnosis and treatment to 

slow disease progression. Int J Clin Pract, 2015. 69(3): p. 336-49. 

157. Vestbo, J., Systemic inflammation and progression of COPD. Thorax, 2007. 

62(6): p. 469-70. 

158. van der Molen, T. and B.J. Kirenga, COPD: early diagnosis and treatment to slow 

disease progression. Int J Clin Pract, 2015. 69(5): p. 513-4. 

159. Harvey, B.G., et al., Progression to COPD in smokers with normal 

spirometry/low DLCO using different methods to determine normal levels. Eur Respir J, 

2016. 47(6): p. 1888-9. 

160. West, J.B., Distribution of mechanical stress in the lung, a possible factor in 

localisation of pulmonary disease. Lancet, 1971. 1(7704): p. 839-41. 

161. Carloni, A., et al., Heterogeneous distribution of mechanical stress in human 

lung: a mathematical approach to evaluate abnormal remodeling in IPF. J Theor Biol, 

2013. 332: p. 136-40. 

162. Madani, A., A. Van Muylem, and P.A. Gevenois, Pulmonary emphysema: effect 

of lung volume on objective quantification at thin-section CT. Radiology, 2010. 257(1): p. 

260-8. 

163. Gevenois, P.A., et al., The effects of age, sex, lung size, and hyperinflation on CT 

lung densitometry. AJR Am J Roentgenol, 1996. 167(5): p. 1169-73. 



www.manaraa.com

142  
 

164. Soejima, K., et al., Longitudinal follow-up study of smoking-induced lung density 

changes by high-resolution computed tomography. Am J Respir Crit Care Med, 2000. 

161(4 Pt 1): p. 1264-73. 

165. Du, K., et al., Respiratory effort correction strategies to improve the 

reproducibility of lung expansion measurements. Med Phys, 2013. 40(12): p. 123504. 

166. Du, K., et al., Reproducibility of intensity-based estimates of lung ventilation. 

Med Phys, 2013. 40(6): p. 063504. 

167. Du, K., et al., Reproducibility of registration-based measures of lung tissue 

expansion. Med Phys, 2012. 39(3): p. 1595-608. 

168. Stoel, B.C., et al., Sources of error in lung densitometry with CT. Invest Radiol, 

1999. 34(4): p. 303-9. 

169. Yuan, R., et al., The effects of radiation dose and CT manufacturer on 

measurements of lung densitometry. Chest, 2007. 132(2): p. 617-23. 

170. Shaker, S.B., et al., Volume adjustment of lung density by computed tomography 

scans in patients with emphysema. Acta Radiol, 2004. 45(4): p. 417-23. 

171. Boes, J.L., et al., The Impact of Sources of Variability on Parametric Response 

Mapping of Lung CT Scans. Tomography, 2015. 1(1): p. 69-77. 

172. Russi, E.W., K.E. Bloch, and W. Weder, Functional and morphological 

heterogeneity of emphysema and its implication for selection of patients for lung volume 

reduction surgery. Eur Respir J, 1999. 14(1): p. 230-6. 

173. Tolnai, J., et al., Functional and morphological assessment of early impairment of 

airway function in a rat model of emphysema. J Appl Physiol (1985), 2012. 112(11): p. 

1932-9. 



www.manaraa.com

143  
 

174. Weatherall, M., et al., Distinct clinical phenotypes of airways disease defined by 

cluster analysis. Eur Respir J, 2009. 34(4): p. 812-8. 

175. Miravitlles, M., M. Calle, and J.J. Soler-Cataluna, Clinical phenotypes of COPD: 

identification, definition and implications for guidelines. Arch Bronconeumol, 2012. 

48(3): p. 86-98. 

176. Burgel, P.R., et al., Clinical COPD phenotypes identified by cluster analysis: 

validation with mortality. Eur Respir J, 2012. 40(2): p. 495-6. 

177. Burgel, P.R., et al., Clinical COPD phenotypes: a novel approach using principal 

component and cluster analyses. Eur Respir J, 2010. 36(3): p. 531-9. 

178. de Bruijne, M., Machine learning approaches in medical image analysis: From 

detection to diagnosis. Med Image Anal, 2016. 33: p. 94-7. 

179. van Tulder, G. and M. de Bruijne, Combining Generative and Discriminative 

Representation Learning for Lung CT Analysis with Convolutional Restricted Boltzmann 

Machines. IEEE Trans Med Imaging, 2016. 

180. Anthimopoulos, M., et al., Lung Pattern Classification for Interstitial Lung 

Diseases Using a Deep Convolutional Neural Network. IEEE Trans Med Imaging, 2016. 

 

 


	CT image registration-based lung mechanics In COPD
	Recommended Citation

	tmp.1490738047.pdf.gHg1y

